345 research outputs found

    Optical Conductivity in a Simple Model of Pseudogap State in Two-Dimensional System

    Full text link
    We present calculation of optical conductivity in a simple model of electronic spectrum of two-dimensional system with "hot patches" on the Fermi surface, leading to non Fermi-liquid renormalization of the spectral density (pseudogap) on these patches. It is shown that this model qualitatively reproduces basic anomalies of optical experiments in the pseudogap state of copper oxides.Comment: 12 pages, 6 figures, RevTeX 3.0, Postscript figures attache

    Ginzburg-Landau Expansion in a Toy Model of Superconductor with Pseudogap

    Full text link
    We propose a toy model of electronic spectrum of two-dimensional system with ``hot-patches'' on the Fermi surface, which leads to essential renormalization of spectral density (pseudogap). Within this model we derive Ginzburg-Landau expansion for both s-wave and d-wave Cooper pairing and analyze the influence of pseudogap formation on the basic properties of superconductors.Comment: 14 pages, 14 figures, RevTeX 3.0, Postscript figures attached, some changes in the explanation of the model, published in JETP 115, No.2, (1999

    Generalized dynamical mean-field theory in physics of strongly correlated systems

    Full text link
    This review is devoted to generalization of dynamical mean-field theory (DMFT) for strongly correlated electronic systems towards the account of different types of additional interactions, necessary for correct physical description of many experimentally observed phenomena in such systems. As additional interactions we consider: (1) interaction of electrons with antiferromagnetic (or charge) fluctuations of order parameter in high-Tc superconductors leading to the formation of pseudogap state, (2) scattering of electrons on static disorder and its role in general picture of Anderson-Hubbard metal-insulator transition, (3) electron-phonon interaction and corresponding anomalies of electronic spectra in strongly correlated systems. Proposed DMFT+Sigma approach is based on taking into account above mentioned interactions by introducing additional self-energy Sigma (in general momentum dependent) into conventional DMFT scheme and calculated in a self-consistent way within the standard set of DMFT equations. Here we formulate general scheme of calculation of both one-particle (spectral functions and densities of states) and two-particle (optical conductivity) properties. We examine the problem of pseudogap formation, including the Fermi arc formation and partial destruction of the Fermi surface, metal-insulator transition in disordered Anderson-Hubbard model, and general picture of kink formation within electronic spectra in strongly correlated systems. DMFT+Sigma approach is generalized to describe realistic materials with strong electron-electron correlations based on LDA+DMFT method. General scheme of LDA+DMFT method is presented together with some of its applications to real systems. The LDA+DMFT+Sigma approach is employed to modelling of pseudogap state of electron and hole doped high-T_c cuprates. Comparison with variety of ARPES experiments is given.Comment: 60 pages, 24 figures. Review article accepted for publication in Physics-Uspekh
    • …
    corecore