50 research outputs found

    Geometry of quasiperiodic functions on the plane

    Full text link
    The present article proposes a review of the most recent results obtained in the study of Novikov's problem on the description of the geometry of the level lines of quasi-periodic functions in the plane. Most of the paper is devoted to the results obtained for functions with three quasi-periods, which play a very important role in the theory of transport phenomena in metals. In this part, along with previously known results, a number of new results are presented that significantly refine the general description of the picture that arises in this case. New statements are also presented for the case of functions with more than three quasi-periods, which open up approaches to the further study of Novikov's problem in the most general formulation. The role of Novikov's problem in various fields of mathematical and theoretical physics is also discussed.Comment: 24 pages, 17 figures, late

    Quasiperiodic functions theory and the superlattice potentials for a two-dimensional electron gas

    Full text link
    We consider Novikov problem of the classification of level curves of quasiperiodic functions on the plane and its connection with the conductivity of two-dimensional electron gas in the presence of both orthogonal magnetic field and the superlattice potentials of special type. We show that the modulation techniques used in the recent papers on the 2D heterostructures permit to obtain the general quasiperiodic potentials for 2D electron gas and consider the asymptotic limit of conductivity when τ\tau \to \infty. Using the theory of quasiperiodic functions we introduce here the topological characteristics of such potentials observable in the conductivity. The corresponding characteristics are the direct analog of the "topological numbers" introduced previously in the conductivity of normal metals.Comment: Revtex, 16 pages, 12 figure

    Integrable lattices and their sublattices II. From the B-quadrilateral lattice to the self-adjoint schemes on the triangular and the honeycomb lattices

    Full text link
    An integrable self-adjoint 7-point scheme on the triangular lattice and an integrable self-adjoint scheme on the honeycomb lattice are studied using the sublattice approach. The star-triangle relation between these systems is introduced, and the Darboux transformations for both linear problems from the Moutard transformation of the B-(Moutard) quadrilateral lattice are obtained. A geometric interpretation of the Laplace transformations of the self-adjoint 7-point scheme is given and the corresponding novel integrable discrete 3D system is constructed.Comment: 15 pages, 6 figures; references added, some typos correcte

    Indicators and a mechanism to ensure economic security of the regions

    Get PDF
    In article the system of indicators of economic security of the region. Considered signs of classification of the regions to identify threshold levels of performance indicators of economic security. The proposed mechanism of ensuring economic security of the region, the algorithm of development strategy of economic security, the stages of formation of system of economic security of the regio

    Discrete complex analysis on planar quad-graphs

    Get PDF
    We develop a linear theory of discrete complex analysis on general quad-graphs, continuing and extending previous work of Duffin, Mercat, Kenyon, Chelkak and Smirnov on discrete complex analysis on rhombic quad-graphs. Our approach based on the medial graph yields more instructive proofs of discrete analogs of several classical theorems and even new results. We provide discrete counterparts of fundamental concepts in complex analysis such as holomorphic functions, derivatives, the Laplacian, and exterior calculus. Also, we discuss discrete versions of important basic theorems such as Green's identities and Cauchy's integral formulae. For the first time, we discretize Green's first identity and Cauchy's integral formula for the derivative of a holomorphic function. In this paper, we focus on planar quad-graphs, but we would like to mention that many notions and theorems can be adapted to discrete Riemann surfaces in a straightforward way. In the case of planar parallelogram-graphs with bounded interior angles and bounded ratio of side lengths, we construct a discrete Green's function and discrete Cauchy's kernels with asymptotics comparable to the smooth case. Further restricting to the integer lattice of a two-dimensional skew coordinate system yields appropriate discrete Cauchy's integral formulae for higher order derivatives.Comment: 49 pages, 8 figure

    Cauchy problem for integrable discrete equations on quad-graphs

    Full text link
    Initial value problems for the integrable discrete equations on quad-graphs are investigated. A geometric criterion of the well-posedness of such a problem is found. The effects of the interaction of the solutions with the localized defects in the regular square lattice are discussed for the discrete potential KdV and linear wave equations. The examples of kinks and solitons on various quad-graphs, including quasiperiodic tilings, are presented.Comment: Corrected version with the assumption of nonsingularity of solutions explicitly state

    Rectangular diagrams of Legendrian graphs

    No full text
    corecore