330 research outputs found

    Identification of the TeV Gamma-ray Source ARGO J2031+4157 with the Cygnus Cocoon

    Get PDF
    The extended TeV gamma-ray source ARGO J2031+4157 (or MGRO J2031+41) is positionally consistent with the Cygnus Cocoon discovered by FermiFermi-LAT at GeV energies in the Cygnus superbubble. Reanalyzing the ARGO-YBJ data collected from November 2007 to January 2013, the angular extension and energy spectrum of ARGO J2031+4157 are evaluated. After subtracting the contribution of the overlapping TeV sources, the ARGO-YBJ excess map is fitted with a two-dimensional Gaussian function in a square region of 10∘×10∘10^{\circ}\times 10^{\circ}, finding a source extension σext\sigma_{ext}= 1∘^{\circ}.8±\pm0∘^{\circ}.5. The observed differential energy spectrum is dN/dE=(2.5±0.4)×10−11(E/1TeV)−2.6±0.3dN/dE =(2.5\pm0.4) \times 10^{-11}(E/1 TeV)^{-2.6\pm0.3} photons cm−2^{-2} s−1^{-1} TeV−1^{-1}, in the energy range 0.2-10 TeV. The angular extension is consistent with that of the Cygnus Cocoon as measured by FermiFermi-LAT, and the spectrum also shows a good connection with the one measured in the 1-100 GeV energy range. These features suggest to identify ARGO J2031+4157 as the counterpart of the Cygnus Cocoon at TeV energies. The Cygnus Cocoon, located in the star-forming region of Cygnus X, is interpreted as a cocoon of freshly accelerated cosmic rays related to the Cygnus superbubble. The spectral similarity with Supernova Remnants indicates that the particle acceleration inside a superbubble is similar to that in a SNR. The spectral measurements from 1 GeV to 10 TeV allows for the first time to determine the possible spectrum slope of the underlying particle distribution. A hadronic model is adopted to explain the spectral energy distribution.Comment: 16 pages, 3 figures, has been accepted by ApJ for publicatio

    A metric for predicting binaural speech intelligibility in stationary noise and competing speech maskers

    Get PDF
    One criterion in the design of binaural sound scenes in audio production is the extent to which the intended speech message is correctly understood. Object-based audio broadcasting systems have permitted sound editors to gain more access to the metadata (e.g., intensity and location) of each sound source, providing better control over speech intelligibility. The current study describes and evaluates a binaural distortion-weighted glimpse proportion metric -- BiDWGP -- which is motivated by better-ear glimpsing and binaural masking level differences. BiDWGP predicts intelligibility from two alternative input forms: either binaural recordings or monophonic recordings from each sound source along with their locations. Two listening experiments were performed with stationary noise and competing speech, one in the presence of a single masker, the other with multiple maskers, for a variety of spatial conïŹgurations. Overall, BiDWGP with both input forms predicts listener keyword scores with correlations of 0.95 and 0.91 for single- and multi-masker conditions, respectively. When considering masker type separately, correlations rise to 0.95 and above for both types of maskers. Predictions using the two input forms are very similar, suggesting that BiDWGP can be applied to the design of sound scenes where only individual sound sources and their locations are available

    Strange particle production in proton-proton collisions at s=0.9\sqrt{s}=0.9 TeV with ALICE at the LHC

    Get PDF
    The production of mesons containing strange quarks (Ks0^0_s, ϕ\phi) and both singly and doubly strange baryons (Λ\Lambda, Anti-Λ\Lambda, and Ξ\Xi+Anti-Ξ\Xi) are measured at central rapidity in pp collisions at s\sqrt{s} = 0.9 TeV with the ALICE experiment at the LHC. The results are obtained from the analysis of about 250 k minimum bias events recorded in 2009. Measurements of yields (dN/dy) and transverse momentum spectra at central rapidities for inelastic pp collisions are presented. For mesons, we report yields () of 0.184 ±\pm 0.002 stat. ±\pm 0.006 syst. for Ks0^0_s and 0.021 ±\pm 0.004 stat. ±\pm 0.003 syst. for ϕ\phi. For baryons, we find = 0.048 ±\pm 0.001 stat. ±\pm 0.004 syst. for Λ\Lambda, 0.047 ±\pm 0.002 stat. ±\pm 0.005 syst. for Anti-Λ\Lambda and 0.0101 ±\pm 0.0020 stat. ±\pm 0.0009 syst. for Ξ\Xi+Anti-Ξ\Xi. The results are also compared with predictions for identified particle spectra from QCD-inspired models and provide a baseline for comparisons with both future pp measurements at higher energies and heavy-ion collisions.Comment: 33 pages, 21 captioned figures, 10 tables, authors from page 28, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/387
    • 

    corecore