797 research outputs found
Finding Exogenous Variables in Data with Many More Variables than Observations
Many statistical methods have been proposed to estimate causal models in
classical situations with fewer variables than observations (p<n, p: the number
of variables and n: the number of observations). However, modern datasets
including gene expression data need high-dimensional causal modeling in
challenging situations with orders of magnitude more variables than
observations (p>>n). In this paper, we propose a method to find exogenous
variables in a linear non-Gaussian causal model, which requires much smaller
sample sizes than conventional methods and works even when p>>n. The key idea
is to identify which variables are exogenous based on non-Gaussianity instead
of estimating the entire structure of the model. Exogenous variables work as
triggers that activate a causal chain in the model, and their identification
leads to more efficient experimental designs and better understanding of the
causal mechanism. We present experiments with artificial data and real-world
gene expression data to evaluate the method.Comment: A revised version of this was published in Proc. ICANN201
Independent component analysis for domain independent watermarking
A new principled domain independent watermarking framework is presented. The new approach is based on embedding the message in statistically independent sources of the covertext to mimimise covertext distortion, maximise the information embedding rate and improve the method's robustness against various attacks. Experiments comparing the performance of the new approach, on several standard attacks show the current proposed approach to be competitive with other state of the art domain-specific methods
Smoothed Analysis of Tensor Decompositions
Low rank tensor decompositions are a powerful tool for learning generative
models, and uniqueness results give them a significant advantage over matrix
decomposition methods. However, tensors pose significant algorithmic challenges
and tensors analogs of much of the matrix algebra toolkit are unlikely to exist
because of hardness results. Efficient decomposition in the overcomplete case
(where rank exceeds dimension) is particularly challenging. We introduce a
smoothed analysis model for studying these questions and develop an efficient
algorithm for tensor decomposition in the highly overcomplete case (rank
polynomial in the dimension). In this setting, we show that our algorithm is
robust to inverse polynomial error -- a crucial property for applications in
learning since we are only allowed a polynomial number of samples. While
algorithms are known for exact tensor decomposition in some overcomplete
settings, our main contribution is in analyzing their stability in the
framework of smoothed analysis.
Our main technical contribution is to show that tensor products of perturbed
vectors are linearly independent in a robust sense (i.e. the associated matrix
has singular values that are at least an inverse polynomial). This key result
paves the way for applying tensor methods to learning problems in the smoothed
setting. In particular, we use it to obtain results for learning multi-view
models and mixtures of axis-aligned Gaussians where there are many more
"components" than dimensions. The assumption here is that the model is not
adversarially chosen, formalized by a perturbation of model parameters. We
believe this an appealing way to analyze realistic instances of learning
problems, since this framework allows us to overcome many of the usual
limitations of using tensor methods.Comment: 32 pages (including appendix
Fourier PCA and Robust Tensor Decomposition
Fourier PCA is Principal Component Analysis of a matrix obtained from higher
order derivatives of the logarithm of the Fourier transform of a
distribution.We make this method algorithmic by developing a tensor
decomposition method for a pair of tensors sharing the same vectors in rank-
decompositions. Our main application is the first provably polynomial-time
algorithm for underdetermined ICA, i.e., learning an matrix
from observations where is drawn from an unknown product
distribution with arbitrary non-Gaussian components. The number of component
distributions can be arbitrarily higher than the dimension and the
columns of only need to satisfy a natural and efficiently verifiable
nondegeneracy condition. As a second application, we give an alternative
algorithm for learning mixtures of spherical Gaussians with linearly
independent means. These results also hold in the presence of Gaussian noise.Comment: Extensively revised; details added; minor errors corrected;
exposition improve
Least Dependent Component Analysis Based on Mutual Information
We propose to use precise estimators of mutual information (MI) to find least
dependent components in a linearly mixed signal. On the one hand this seems to
lead to better blind source separation than with any other presently available
algorithm. On the other hand it has the advantage, compared to other
implementations of `independent' component analysis (ICA) some of which are
based on crude approximations for MI, that the numerical values of the MI can
be used for:
(i) estimating residual dependencies between the output components;
(ii) estimating the reliability of the output, by comparing the pairwise MIs
with those of re-mixed components;
(iii) clustering the output according to the residual interdependencies.
For the MI estimator we use a recently proposed k-nearest neighbor based
algorithm. For time sequences we combine this with delay embedding, in order to
take into account non-trivial time correlations. After several tests with
artificial data, we apply the resulting MILCA (Mutual Information based Least
dependent Component Analysis) algorithm to a real-world dataset, the ECG of a
pregnant woman.
The software implementation of the MILCA algorithm is freely available at
http://www.fz-juelich.de/nic/cs/softwareComment: 18 pages, 20 figures, Phys. Rev. E (in press
Non-Redundant Spectral Dimensionality Reduction
Spectral dimensionality reduction algorithms are widely used in numerous
domains, including for recognition, segmentation, tracking and visualization.
However, despite their popularity, these algorithms suffer from a major
limitation known as the "repeated Eigen-directions" phenomenon. That is, many
of the embedding coordinates they produce typically capture the same direction
along the data manifold. This leads to redundant and inefficient
representations that do not reveal the true intrinsic dimensionality of the
data. In this paper, we propose a general method for avoiding redundancy in
spectral algorithms. Our approach relies on replacing the orthogonality
constraints underlying those methods by unpredictability constraints.
Specifically, we require that each embedding coordinate be unpredictable (in
the statistical sense) from all previous ones. We prove that these constraints
necessarily prevent redundancy, and provide a simple technique to incorporate
them into existing methods. As we illustrate on challenging high-dimensional
scenarios, our approach produces significantly more informative and compact
representations, which improve visualization and classification tasks
Use of Bimodal Coherence to Resolve Spectral Indeterminacy in Convolutive BSS
Recent studies show that visual information contained in visual speech can be helpful for the performance enhancement of audio-only blind source separation (BSS) algorithms. Such information is exploited through the statistical characterisation of the coherence between the audio and visual speech using, e.g. a Gaussian mixture model (GMM). In this paper, we present two new contributions. An adapted expectation maximization (AEM) algorithm is proposed in the training process to model the audio-visual coherence upon the extracted features. The coherence is exploited to solve the permutation problem in the frequency domain using a new sorting scheme. We test our algorithm on the XM2VTS multimodal database. The experimental results show that our proposed algorithm outperforms traditional audio-only BSS
Microstructure and tribological properties of solid lubricant-doped CMT-WAAMed Stellite deposits
A large share of the world’s total energy consumption is used to overcome friction. Therefore, low friction wear-resistant materials are needed. Solid lubricants are solid-phase materials that can reduce friction at different temperatures between two surfaces sliding against each other without the need for a grease or liquid oil medium. In this study, Cold Metal Transfer Wire Arc Additive Manufacturing (CMT-WAAM) was used to deposit solid lubricant (WS2, MoS2, CaF2) doped hypoeutectic Stellite alloy. Fabricated deposits possessed crack- and pore-free microstructures consisting of γ-Co and M7C3 carbide eutectics embedded with chromium sulfides and microhardness values of ~ 530 HV1. They were also tested in self-mated unidirectional sliding wear tests in dry conditions at room temperature (RT) and at 300 °C in an air atmosphere. The results showed that the dynamic coefficient of friction (COF) decreased ~ 27% at RT and ~ 21% at 300 °C without losing the wear properties. During sliding wear tests severe strain hardening occurred and γ-Co was found to transform to ε-Co. The developed deposits can be used as hard facings or 3D printed components in applications that require good sliding wear properties at different temperatures such as metal forming tools, power transmission components, valves, and internal parts of combustion engines.Peer reviewe
- …