317 research outputs found

    Improvement of the Usability of Online Mentoring Website

    Get PDF
    The purpose of this study is to improve the usability of the current online mentoring website by deriving what should be improved through assessment and reflecting it to system improvement. The related data such as search log and Think Aloud were collected from user groups (9 users in total), and usability was tested according to the predefined test procedures. The collected data were analyzed, using quantitative methods. In terms of search log, the related items including effectiveness, efficiency, satisfaction and error were quantified according to usability testing standards. Then, descriptive statistics was performed. According to usability comparison before and after system improvement, it has mostly improved such as improved effectiveness (increase by 15 points), better efficiency (reduction by 41 seconds), increase in satisfaction (by 8 points) and decrease in error frequency (decrease by 1.2 times). Usability testing should be viewed as a process, not outcome itself. Therefore, it could be used during system prototype in addition to the current system and useful in system improvement

    Scale-up study for ex-vivo expansion of allogeneic natural killer cells in stirred-tank bioreactor

    Get PDF
    Natural killer (NK) cells are a type of lymphocyte in the blood that are responsible for innate and adaptive immune response, and they mature in the liver and bone marrow. Being a key role in host defense system with direct and indirect killing of virus-infected cells or cancer cells, NK cell has been considered an attractive candidate for cancer therapy. Peripheral blood shows the low frequency of NK cells, so ex vivo expansion method is important to obtain sufficient NK cells for therapeutic use. Currently, we successfully developed bioreactor process for NK cell expansion on lab-scale. Stirred-tank bioreactor could be considered as optimal alternative system for large-scale NK cell expansion compared with other ones because it is automated, less labor intensive, scalable, well-controlled and cost-effective. In bioreactor process, agitation is one of important parameters for NK cell expansion because it is necessary to provide homogenous culture conditions. So we defined effects of agitation in bioreactor and figured out an optimum condition. After that scale-up studies were carried out with manufacturing-scale bioreactor based on these results. The results in terms of growth rate, viability cytotoxicity and purity, were comparable with lab-scale

    Reversible Splenium Lesion of the Corpus Callosum in Hemorrhagic Fever with Renal Failure Syndrome

    Get PDF
    This is the first case of virus-associated encephalitis/encephalopathy in which the pathogen was Hantaan virus. A 53-yr-old man presented fever, renal failure and a hemorrhagic tendency and he was diagnosed with hemorrhagic fever with renal failure syndrome (HFRS). In the course of his illness, mild neurologic symptoms such as dizziness and confusion developed and magnetic resonance images revealed a reversible lesion in the splenium of the corpus callosum. This case suggests that HFRS patients with neurologic symptoms like dizziness and mental slowing should be considered to have structural brain lesions and to require brain imaging studies

    A Case Report of Sweet’s Syndrome with Parotitis

    Get PDF
    Sweet’s syndrome is characterized by clinical symptoms, physical features, and pathologicfindings which include fever, neutrophilia, tender erythematous skin lesions, and a diffuseinfiltrate of mature neutrophils. This is a report of our experience of Sweet’s syndrome withparotitis. A 57-year-old man initially presented with tender swelling on the right cheeksimilar to parotitis. His symptoms relapsed despite the use of an oral antibiotic agent for 3weeks. He additionally presented with erythematous papules and plaques on the perioculararea and dorsum of both hands. Histiopathologic findings on punch biopsy of the rightdorsum of the hand showed superficial perivenular histiocytic infiltration without vasculitis.We confirmed this as histiocytoid Sweet’s syndrome and used systemic corticosteroid. Afterinitiation of treatment with systemic corticosteroids, there was a prompt recovery from boththe dermatosis-releated symptoms and skin lesions. Sweet’s syndrome should be consideredin patients with therapy-refractory parotitis and unclear infiltrated nodules. We present aconfusing case who initially appeared to have parotitis but turned out to have histiocytoidSweet’s syndrome

    Sulforaphane Increases Cyclin-Dependent Kinase Inhibitor, p21 Protein in Human Oral Carcinoma Cells and Nude Mouse Animal Model to Induce G2/M Cell Cycle Arrest

    Get PDF
    Previously, our group reported that sulforaphane (SFN), a naturally occurring chemopreventive agent from cruciferous vegetables, effectively inhibits the proliferation of KB and YD-10B human oral squamous carcinoma cells by causing apoptosis. In this study, treatment of 20 and 40 µM of SFN for 12 h caused a cell cycle arrest in the G2/M phase. Cell cycle arrest induced by SFN was associated with a significant increase in the p21 protein level and a decrease in cyclin B expression, but there was no change in the cyclin A protein level. In addition, SFN increased the p21 promoter activity significantly. Furthermore, SFN induced p21 protein expression in a nude mouse xenograft model suggesting that SFN is a potent inducer of the p21 protein in human oral squamous carcinoma cells. These findings show that SFN is a promising candidate for molecular-targeting chemotherapy against human oral squamous cell carcinoma

    Quantitative Assessment of Chest CT Patterns in COVID-19 and Bacterial Pneumonia Patients: a Deep Learning Perspective

    Get PDF
    Background: It is difficult to distinguish subtle differences shown in computed tomography (CT) images of coronavirus disease 2019 (COVID-19) and bacterial pneumonia patients, which often leads to an inaccurate diagnosis. It is desirable to design and evaluate interpretable feature extraction techniques to describe the patient’s condition. Methods: This is a retrospective cohort study of 170 confirmed patients with COVID-19 or bacterial pneumonia acquired at Yeungnam University Hospital in Daegu, Korea. The lung and lesion regions were segmented to crop the lesion into 2D patches to train a classifier model that could differentiate between COVID-19 and bacterial pneumonia. The K-means algorithm was used to cluster deep features extracted by the trained model into 20 groups. Each lesion patch cluster was described by a characteristic imaging term for comparison. For each CT image containing multiple lesions, a histogram of lesion types was constructed using the cluster information. Finally, a Support Vector Machine classifier was trained with the histogram and radiomics features to distinguish diseases and severity. Results: The 20 clusters constructed from 170 patients were reviewed based on common radiographic appearance types. Two clusters showed typical findings of COVID-19, with two other clusters showing typical findings related to bacterial pneumonia. Notably, there is one cluster that showed bilateral diffuse ground-glass opacities (GGOs) in the central and peripheral lungs and was considered to be a key factor for severity classification. The proposed method achieved an accuracy of 91.2% for classifying COVID-19 and bacterial pneumonia patients with 95% reported for severity classification. The CT quantitative parameters represented by the values of cluster 8 were correlated with existing laboratory data and clinical parameters. Conclusion: Deep chest CT analysis with constructed lesion clusters revealed well-known COVID-19 CT manifestations comparable to manual CT analysis. The constructed histogram features improved accuracy for both diseases and severity classification, and showed correlations with laboratory data and clinical parameters. The constructed histogram features can provide guidance for improved analysis and treatment of COVID-19. © 2021. The Korean Academy of Medical Sciences.1

    LONP1 and ClpP cooperatively regulate mitochondrial proteostasis for cancer cell survival

    Get PDF
    Mitochondrial proteases are key components in mitochondrial stress responses that maintain proteostasis and mitochondrial integrity in harsh environmental conditions, which leads to the acquisition of aggressive phenotypes, including chemoresistance and metastasis. However, the molecular mechanisms and exact role of mitochondrial proteases in cancer remain largely unexplored. Here, we identified functional crosstalk between LONP1 and ClpP, which are two mitochondrial matrix proteases that cooperate to attenuate proteotoxic stress and protect mitochondrial functions for cancer cell survival. LONP1 and ClpP genes closely localized on chromosome 19 and were co-expressed at high levels in most human cancers. Depletion of both genes synergistically attenuated cancer cell growth and induced cell death due to impaired mitochondrial functions and increased oxidative stress. Using mitochondrial matrix proteomic analysis with an engineered peroxidase (APEX)-mediated proximity biotinylation method, we identified the specific target substrates of these proteases, which were crucial components of mitochondrial functions, including oxidative phosphorylation, the TCA cycle, and amino acid and lipid metabolism. Furthermore, we found that LONP1 and ClpP shared many substrates, including serine hydroxymethyltransferase 2 (SHMT2). Inhibition of both LONP1 and ClpP additively increased the amount of unfolded SHMT2 protein and enhanced sensitivity to SHMT2 inhibitor, resulting in significantly reduced cell growth and increased cell death under metabolic stress. Additionally, prostate cancer patients with higher LONP1 and ClpP expression exhibited poorer survival. These results suggest that interventions targeting the mitochondrial proteostasis network via LONP1 and ClpP could be potential therapeutic strategies for cancer
    corecore