636 research outputs found
Strong and Reversible Adhesion of Interlocked 3D-Microarchitectures
Diverse physical interlocking devices have recently been developed based on one-dimensional (1D), high-aspect-ratio inorganic and organic nanomaterials. Although these 1D nanomaterial-based interlocking devices can provide reliable and repeatable shear adhesion, their adhesion in the normal direction is typically very weak. In addition, the high-aspect-ratio, slender structures are mechanically less durable. In this study, we demonstrate a highly flexible and robust interlocking system that exhibits strong and reversible adhesion based on physical interlocking between three-dimensional (3D) microscale architectures. The 3D microstructures have protruding tips on their cylindrical stems, which enable tight mechanical binding between the microstructures. Based on the unique 3D architectures, the interlocking adhesives exhibit remarkable adhesion strengths in both the normal and shear directions. In addition, their adhesion is highly reversible due to the robust mechanical and structural stability of the microstructures. An analytical model is proposed to explain the measured adhesion behavior, which is in good agreement with the experimental results
Genetic Mechanisms in Aspirin-Exacerbated Respiratory Disease
Aspirin-exacerbated respiratory disease (AERD) refers to the development of bronchoconstriction in asthmatics following the exposure to aspirin or other nonsteroidal anti-inflammatory drugs. The key pathogenic mechanisms associated with AERD are the overproduction of cysteinyl leukotrienes (CysLTs) and increased CysLTR1 expression in the airway mucosa and decreased lipoxin and PGE2 synthesis. Genetic studies have suggested a role for variability of genes in disease susceptibility and the response to medication. Potential genetic biomarkers contributing to the AERD phenotype include HLA-DPB1, LTC4S, ALOX5, CYSLT, PGE2, TBXA2R, TBX21, MS4A2, IL10, ACE, IL13, KIF3A, SLC22A2, CEP68, PTGER, and CRTH2 and a four-locus SNP set composed of B2ADR, CCR3, CysLTR1, and FCER1B. Future areas of investigation need to focus on comprehensive approaches to identifying biomarkers for early diagnosis
Serum cytokine profiles in healthy young and elderly population assessed using multiplexed bead-based immunoassays
<p>Abstract</p> <p>Background</p> <p>Lipid metabolites and cytokines, including chemokines and growth factors, are the key regulators of immune cell function and differentiation, and thus, dysregulation of these regulators is associated with various human diseases. However, previous studies demonstrating a positive correlation of cytokine levels with aging may have been influenced by various environmental factors and underlying diseases. Also, data regarding cytokine profiling in the elderly are limited to a small subset of cytokines.</p> <p>Methods</p> <p>We compared the profiles of 22 cytokines, including chemokines and growth factors, in a case-controlled study group of a gender-matched, healthy cohort of 55 patients over the age of 65 and 55 patients under the age of 45. Assessment of serum cytokine concentrations was performed using commercially-available multiplex bead-based sandwich immunoassays.</p> <p>Results</p> <p>Soluble CD40 ligand (sCD40L) and transforming growth factor alpha (TGF-α) levels were significantly higher in the elderly patients, whereas granulocyte colony-stimulating factor (G-CSF), granulocyte-monocyte colony-stimulating factor (GM-CSF), and monocyte chemoattractant protein-1 (MCP-1) levels were significantly lower in the elderly patients. The partial correlation analysis demonstrating the correlation between cytokine levels when controlled for gender, systolic blood pressure, total cholesterol, HDL cholesterol, triglyceride, and serum creatinine levels further demonstrated that G-CSF, GM-CSF, and MCP-1 had significant negative correlations with age, whereas sCD40L and TGF-α had significant positive correlations.</p> <p>Conclusions</p> <p>Future studies will focus on examining the significance of these age-related changes in circulating cytokines and other biological markers and their potential contribution to the development of different age-associated diseases.</p
Flexible and Shape-Reconfigurable Hydrogel Interlocking Adhesives for High Adhesion in Wet Environments Based on Anisotropic Swelling of Hydrogel Microstructures
This study presents wet-responsive, shape-reconfigurable, and flexible hydrogel adhesives that exhibit strong adhesion under wet environments based on reversible interlocking between reconfigurable microhook arrays. The experimental investigation on the swelling behavior and structural characterization of the hydrogel microstructures reveal that the microhook arrays undergo anisotropic swelling and shape transformation upon contact with water. The adhesion between the interlocked microhook arrays is greatly enhanced under wet conditions because of the hydration-triggered shape reconfiguration of the hydrogel microstructures. Furthermore, wet adhesion monotonically increases with water-exposure time. A maximum adhesion force of 79.9 N cm-2 in the shear direction is obtained with the hydrogel microhook array after 20 h of swelling, which is 732.3% greater than that under dry conditions (i.e., 9.6 N cm-2). A simple theoretical model is developed to describe the measured adhesion forces. The results are in good agreement with the experimental data
BIOMECHANICAL ANALYSIS OF BACK-SOMERSAULT KICKS IN TAEKWONDO
This study was purposed to investigate biomechanical differences between best and worst trials in performing back-somersault kicks in Taekwondo. Six elite members of college Taekwondo demonstration team participated in this study and executed each ten trials of single back-somersault kick and double back-somersault kick, respectively. High speed motion capturing system collected positions of 21 markers on major anatomical locations to obtain motion data of full body segments. After post-processing procedure, results showed that the best trial of back-somersault kicks indicated longer preparation time (countermovement), larger range of motions of hip joint, and higher peak angular velocities of knee and hip joints prior to take-off than those of the worst trial. We concluded that athletes should avoid a quick countermovement before take-off, which induces insufficient strain energy of lower extremities and ground reaction impulse. Therefore, a sufficient time for muscle contractions are required to develop high power
Exploiting Binary Abstractions in Deciphering Gene Interactions
We consider computationally reconstructing gene regulatory networks on top of the binary abstraction of gene expression state information. Unlike previous Boolean network approaches, the proposed method does not handle noisy gene expression values directly. Instead, two-valued "hidden state" information is derived from gene expression profiles using a robust statistical technique, and a gene interaction network is inferred from this hidden state information. In particular, we exploit Espresso, a well-known 2-level Boolean logic optimizer in order to determine the core network structure. The resulting gene interaction networks can be viewed as dynamic Bayesian networks, which have key advantages over more conventional Bayesian networks in terms of biological phenomena that can be represented. The authors tested the proposed method with a time-course gene expression data set from microarray experiments on anti-cancer drugs doxorubicin and paclitaxel. A gene interaction network was produced by our method, and the identified genes were validated with a public annotation database. The experimental studies we conducted suggest that the proposed method inspired by engineering systems can be a very effective tool to decipher complex gene interactions in living system
Growth hormone-releasing hormone (GHRH) polymorphisms associated with carcass traits of meat in Korean cattle
BACKGROUND: Cold carcass weight (CW) and longissimus muscle area (EMA) are the major quantitative traits in beef cattle. In this study, we found several polymorphisms of growth hormone-releasing hormone (GHRH) gene and examined the association of polymorphisms with carcass traits (CW and EMA) in Korean native cattle (Hanwoo). RESULTS: By direct DNA sequencing in 24 unrelated Korean cattle, we identified 12 single nucleotide polymorphisms within the 9 kb full gene region, including the 1.5 kb promoter region. Among them, six polymorphic sites were selected for genotyping in our beef cattle (n = 428) and five marker haplotypes (frequency > 0.1) were identified. Statistical analysis revealed that -4241A>T showed significant associations with CW and EMA. CONCLUSION: Our findings suggest that polymorphisms in GHRH might be one of the important genetic factors that influence carcass yield in beef cattle. Sequence variation/haplotype information identified in this study would provide valuable information for the production of a commercial line of beef cattle
- …