2,235 research outputs found

    Monitoring of multi-frequency polarization of gamma-ray bright AGNs

    Full text link
    We started two observing programs with the Korean VLBI Network (KVN) monitoring changes in the flux density and polarization of relativistic jets in gamma-ray bright AGNs simultaneously at 22, 43, 86, 129 GHz. One is a single-dish weekly-observing program in dual polarization with KVN 21-m diameter radio telescopes beginning in 2011 May. The other is a VLBI monthly-observing program with the three-element VLBI network at an angular resolution range of 1.0--9.2 mas beginning in 2012 December. The monitoring observations aim to study correlation of variability in gamma-ray with that in radio flux density and polarization of relativistic jets when they flare up. These observations enable us to study the origin of the gamma-ray flares of AGNs.Comment: 4 pages, 4 figures, Proceedings of the conference "The innermost regions of relativistic jets and their magnetic fields", Granada, Spai

    Spontaneous Intraperitoneal Bladder Perforation Associated with Urothelial Carcinoma with Divergent Histologic Differentiation, Diagnosed by CT Cystography

    Get PDF
    Spontaneous bladder perforation is a very rare event. Prompt diagnosis of this injury is very important, particularly with intraperitoneal perforation, because mortality increases if surgical repair is delayed. Previous studies have reported that plain cystography is the primary modality of imaging study rather than relatively insensitive computed tomography (CT) when bladder perforation is suspected. We report here a rare case of spontaneous intraperitoneal perforation of the bladder associated with urothelial carcinoma with divergent histologic differentiation, as diagnosed with CT cystography

    Information and Control ICIC International c ⃝2011 ISSN

    Get PDF
    Abstract. This paper suggests a real-time implementation method for software-in-theloop (SIL) simulation for control systems, primarily for control education. The SIL simulation is carried out by using a PC for the controllers, a PC for the plant, an open network, and a general-purpose computer-aided control system design (CACSD) package. Specially, Ethernet network is investigated in terms of control issues such as sampling interval, network-induced time-delay, use with many I/O points and data synchronization. A performance evaluation of software-in-th

    Bioprinting of three-dimensional dentin-pulp complex with local differentiation of human dental pulp stem cells

    Get PDF
    Numerous approaches have been introduced to regenerate artificial dental tissues. However, conventional approaches are limited when producing a construct with three-dimensional patient-specific shapes and compositions of heterogeneous dental tissue. In this research, bioprinting technology was applied to produce a three-dimensional dentin-pulp complex with patient-specific shapes by inducing localized differentiation of human dental pulp stem cells within a single structure. A fibrin-based bio-ink was designed for bioprinting with the human dental pulp stem cells. The effects of fibrinogen concentration within the bio-ink were investigated in terms of printability, human dental pulp stem cell compatibility, and differentiation. The results show that micro-patterns with human dental pulp stem cells could be achieved with more than 88% viability. Its odontogenic differentiation was also regulated according to the fibrinogen concentration. Based on these results, a dentin-pulp complex having patient-specific shape was produced by co-printing the human dental pulp stem cell-laden bio-inks with polycaprolactone, which is a bio-thermoplastic used for producing the overall shape. After culturing with differentiation medium for 15 days, localized differentiation of human dental pulp stem cells in the outer region of the three-dimensional cellular construct was successfully achieved with localized mineralization. This result demonstrates the possibility to produce patient-specific composite tissues for tooth tissue engineering using three-dimensional bioprinting technology

    BSART (Broadcasting with Selected Acknowledgements and Repeat Transmissions) for Reliable and Low-costed Broadcasting in the Mobile Ad-hoc Network

    Get PDF
    Abstract. In this paper, we suggest enhanced broadcasting method, named 'BSART(Broadcasting with Selected Acknowledgement and Repeat Transmissions)' which reduces broadcast storm and ACK implosion on the mobile ad-hoc network with switched beam antenna elements that can enable bidirectional communication. To reduce broadcast storm, we uses DPDP(Directional Partial Dominant Pruning) method, too. To control ACK implosion problem rising on reliable transmission based on ACK, in case of the number of nodes that required message reception is more than throughput, each nodes retransmit messages constant times without ACK which considering message transmission success probability through related antenna elements(Rmethod). Otherwise, the number of message reception nodes is less than throughput, each node verify message reception with ACK with these antenna elements(A-method). In this paper, we suggest mixed R-/A-method. This method not only can control the number of message transmitting nodes, can manage the number of ACK for each antenna elements. By simulations, we proved that our method provides higher transmission rate than legacy system, reduces broadcast messages and ACKs

    Critical Invalidation of Temperature Dependence of Nanofluid Thermal Conductivity Enhancement

    Get PDF
    Of interest is the accurate measurement of the enhanced thermal conductivity of certain nanofluids free from the impact of natural convection. Owing to its simplicity, wide range of applicability and short response time, the transient hot-wire method (THWM) is frequently used to measure the thermal conductivity of fluids. In order to gain a sufficiently high accuracy, special care should be taken to assure that each measurement is not affected by initial heat supply delay, natural convection, and signal noise. In this study, it was found that there is a temperature limit when using THWM due to the incipience of natural convection. The results imply that the temperature-dependence of the thermal conductivity enhancement observed by other researchers might be misleading when ignoring the impact of natural convection; hence, it could not be used as supporting evidence of the effectiveness of micromixing due to Brownian motion. Thus, it is recommended that researchers report how they keep the impact of the natural convection negligible and check the integrity of their measurements in the future researches

    Advanced Technologies for Large-Sized OLED Display

    Get PDF
    Five years have passed, since the first 55″ full high-definition (FHD) OLED TV fabricated on Gen 8.5 glass was successfully launched into the TV market. For the time being, the size of OLED TV became diverse from 55″ to 77″, and the resolution was doubled into ultrahigh definition (UHD). The brightness and color gamut were enhanced, while the lower power consumption was realized. Utmost picture quality and slim form factor of OLED TV as well as the improved performance have made OLED TV recognized as the best premium TV. In this chapter, we describe the recent progress in three key technologies, which enable such an enhancement of performance in OLED TV, i.e., oxide thin-film transistor (TFT) and white organic light-emitting diode (WOLED), compensation circuit, and method to compensate the nonuniformity of oxide TFTs, OLED devices, and luminance
    corecore