110 research outputs found

    DeepCompass: AI-driven Location-Orientation Synchronization for Navigating Platforms

    Full text link
    In current navigating platforms, the user's orientation is typically estimated based on the difference between two consecutive locations. In other words, the orientation cannot be identified until the second location is taken. This asynchronous location-orientation identification often leads to our real-life question: Why does my navigator tell the wrong direction of my car at the beginning? We propose DeepCompass to identify the user's orientation by bridging the gap between the street-view and the user-view images. First, we explore suitable model architectures and design corresponding input configuration. Second, we demonstrate artificial transformation techniques (e.g., style transfer and road segmentation) to minimize the disparity between the street-view and the user's real-time experience. We evaluate DeepCompass with extensive evaluation in various driving conditions. DeepCompass does not require additional hardware and is also not susceptible to external interference, in contrast to magnetometer-based navigator. This highlights the potential of DeepCompass as an add-on to existing sensor-based orientation detection methods.Comment: 7page with 3 supplemental page

    Transposon mutagenesis of Psychrobacter cryohalolentis PAMC 21807 by tri-parental conjugation

    Get PDF
    Random mutagenesis is commonly used to study gene function. The screening of mutants exhibiting specific phenotypes assists in the identification of phenotype-related genes. In the current study, we isolated Antarctic bacteria, and developed a transposon Tn5 mutagenesis system. A total of 26 strains were isolated from seawater and freshwater near Antarctic King Sejong Research Station, King George Island. Six Psychrobacter strains were identified as psychrophilic, with optimal growth temperatures of 10℃ or 15℃ Psychrobacter cryohalolentis PAMC 21807 with a high growth rate at 4℃ was selected for transposon mutagenesis. Tri-parental conjugation with a plasmid containing Tn5 produced 13 putative recombinants containing the selectable marker. Genomic Southern hybridization confirmed Tn5 existed as episomes for seven recombinants, and for a single recombinant, Tn5 was integrated into the genome of Psychrobacter cryohalolentis PAMC 21807. The result indicates that the mutagenesis method, although successful, has a relatively low rate. The psychrophilic bacteria isolated in this study may be a useful resource for studying cold adaptation mechanisms, and the mutagenesis method can be applied to genetic analysis

    Arabidopsis Serine Decarboxylase Mutants Implicate the Roles of Ethanolamine in Plant Growth and Development

    Get PDF
    Ethanolamine is important for synthesis of choline, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) in plants. The latter two phospholipids are the major phospholipids in eukaryotic membranes. In plants, ethanolamine is mainly synthesized directly from serine by serine decarboxylase. Serine decarboxylase is unique to plants and was previously shown to have highly specific activity to l-serine. While serine decarboxylase was biochemically characterized, its functions and importance in plants were not biologically elucidated due to the lack of serine decarboxylase mutants. Here we characterized an Arabidopsis mutant defective in serine decarboxylase, named atsdc-1 (Arabidopsis thaliana serine decarboxylase-1). The atsdc-1 mutants showed necrotic lesions in leaves, multiple inflorescences, sterility in flower, and early flowering in short day conditions. These defects were rescued by ethanolamine application to atsdc-1, suggesting the roles of ethanolamine as well as serine decarboxylase in plant development. In addition, molecular analysis of serine decarboxylase suggests that Arabidopsis serine decarboxylase is cytosol-localized and expressed in all tissue

    Heterogeneity and its policy implications in GHG emission performance of manufacturing industries

    No full text
    This study aims to explore the changes in the pure GHG emission performance of 11 Korean manufacturing industries to determine whether the green policy was effective in terms of its impact on green productivity. For this purpose, the latest non-radial metafrontier Malmquist CO2 emission performance index (NMMCPI) was used. By using this methodology, technological heterogeneities and slack variables could be incorporated into the previous Malmquist CO2 emission performance index (MCPI). The NMMCPI can be derived by solving several non-radial data envelopment analysis (DEA) models. The NMMCPI is decomposed into three indices; an efficiency change (EC) index, a best-practice gap change (BPC) index, and a technology gap change (TGC) index. By fixing the non-energy inputs, the partial-factor GHG emission performance was measured. Based on the proposed indices, 11 Korean manufacturing industries were analyzed for the period 2011–2016. Empirical results showed an average decrease of 1.5% in the GHG emission performance; the results also revealed variations among industries in EC, BPC and TGC. In addition, it was found that the productivity of each industry is driven mainly by a different factor. Thus, policymakers should consider these factors and propose policies that will support the specific requirements in each industry

    Identification of Rice Genes Associated With Enhanced Cold Tolerance by Comparative Transcriptome Analysis With Two Transgenic Rice Plants Overexpressing DaCBF4 or DaCBF7, Isolated From Antarctic Flowering Plant Deschampsia antarctica

    No full text
    Few plant species can survive in Antarctica, the harshest environment for living organisms. Deschampsia antarctica is the only natural grass species to have adapted to and colonized the maritime Antarctic. To investigate the molecular mechanism of the Antarctic adaptation of this plant, we identified and characterized D. antarctica C-repeat binding factor 4 (DaCBF4), which belongs to monocot CBF group IV. The transcript level of DaCBF4 in D. antarctica was markedly increased by cold and dehydration stress. To assess the roles of DaCBF4 in plants, we generated a DaCBF4-overexpressing transgenic rice plant (Ubi:DaCBF4) and analyzed its abiotic stress response phenotype. Ubi:DaCBF4 displayed enhanced tolerance to cold stress without growth retardation under any condition compared to wild-type plants. Because the cold-specific phenotype of Ubi:DaCBF4 was similar to that of Ubi:DaCBF7 (Byun et al., 2015), we screened for the genes responsible for the improved cold tolerance in rice by selecting differentially regulated genes in both transgenic rice lines. By comparative transcriptome analysis using RNA-seq, we identified 9 and 15 genes under normal and cold-stress conditions, respectively, as putative downstream targets of the two D. antarctica CBFs. Overall, our results suggest that Antarctic hairgrass DaCBF4 mediates the cold-stress response of transgenic rice plants by adjusting the expression levels of a set of stress-responsive genes in transgenic rice plants. Moreover, selected downstream target genes will be useful for genetic engineering to enhance the cold tolerance of cereal plants, including rice

    The Complete Plastome Sequence of an Antarctic Bryophyte Sanionia uncinata (Hedw.) Loeske

    No full text
    Organellar genomes of bryophytes are poorly represented with chloroplast genomes of only four mosses, four liverworts and two hornworts having been sequenced and annotated. Moreover, while Antarctic vegetation is dominated by the bryophytes, there are few reports on the plastid genomes for the Antarctic bryophytes. Sanionia uncinata (Hedw.) Loeske is one of the most dominant moss species in the maritime Antarctic. It has been researched as an important marker for ecological studies and as an extremophile plant for studies on stress tolerance. Here, we report the complete plastome sequence of S. uncinata, which can be exploited in comparative studies to identify the lineage-specific divergence across different species. The complete plastome of S. uncinata is 124,374 bp in length with a typical quadripartite structure of 114 unique genes including 82 unique protein-coding genes, 37 tRNA genes and four rRNA genes. However, two genes encoding the α subunit of RNA polymerase (rpoA) and encoding the cytochrome b6/f complex subunit VIII (petN) were absent. We could identify nuclear genes homologous to those genes, which suggests that rpoA and petN might have been relocated from the chloroplast genome to the nuclear genome

    Antarctic Moss Multiprotein Bridging Factor 1c Overexpression in Arabidopsis Resulted in Enhanced Tolerance to Salt Stress

    No full text
    Polytrichastrum alpinum is one of the moss species that survives extreme conditions in the Antarctic. In order to explore the functional benefits of moss genetic resources, P. alpinum multiprotein-bridging factor 1c gene (PaMBF1c) was isolated and characterized. The deduced amino acid sequence of PaMBF1c comprises of a multiprotein-bridging factor (MBF1) domain and a helix-turn-helix (HTH) domain. PaMBF1c expression was induced by different abiotic stresses in P. alpinum, implying its roles in stress responses. We overexpressed PaMBF1c in Arabidopsis and analyzed the resulting phenotypes in comparison with wild type and/or Arabidopsis MBF1c (AtMBF1c) overexpressors. Overexpression of PaMBF1c in Arabidopsis resulted in enhanced tolerance to salt and osmotic stress, as well as to cold and heat stress. More specifically, enhanced salt tolerance was observed in PaMBF1c overexpressors in comparison to wild type but not clearly observable in AtMBF1c overexpressing lines. Thus, these results implicate the evolution of PaMBF1c under salt-enriched Antarctic soil. RNA-Seq profiling of NaCl-treated plants revealed that 10 salt-stress inducible genes were already up-regulated in PaMBF1c overexpressing plants even before NaCl treatment. Gene ontology enrichment analysis with salt up-regulated genes in each line uncovered that the terms lipid metabolic process, ion transport, and cellular amino acid biosynthetic process were significantly enriched in PaMBF1c overexpressors. Additionally, gene enrichment analysis with salt down-regulated genes in each line revealed that the enriched categories in wild type were not significantly overrepresented in PaMBF1c overexpressing lines. The up-regulation of several genes only in PaMBF1c overexpressing lines suggest that enhanced salt tolerance in PaMBF1c-OE might involve reactive oxygen species detoxification, maintenance of ATP homeostasis, and facilitation of Ca2+ signaling. Interestingly, many salt down-regulated ribosome- and translation-related genes were not down-regulated in PaMBF1c overexpressing lines under salt stress. These differentially regulated genes by PaMBF1c overexpression could contribute to the enhanced tolerance in PaMBF1c overexpressing lines under salt stress

    The complete mitogenome of the Antarctic moss Bartramia patens Brid

    No full text
    The complete mitogenome (106,827 bp) of the Antarctic moss Bartramia patens Brid. (Bartramiaceae) was analyzed. It consists of 40 protein-coding genes, 3 ribosomal RNAs, and 24 transfer RNAs. The phylogenetic tree based on the combined amino acids sequences of 32 mitochondrial genes showed B. patens to have a sister relationship with B. pomiformis. The size of the mitochondrial genome of B. patens was 629 bp larger than that of B. pomiformis due to the expansion of the intronic region. This phenomenon is very characteristic and requires more comparative studies with the mitogenomes of other bryophytes

    Spectral Characteristics of the Antarctic Vegetation: A Case Study of Barton Peninsula

    No full text
    Spectral information is a proxy for understanding the characteristics of ground targets without a potentially disruptive contact. A spectral library is a collection of this information and serves as reference data in remote sensing analyses. Although widely used, data of this type for most ground objects in polar regions are notably absent. Remote sensing data are widely used in polar research because they can provide helpful information for difficult-to-access or extensive areas. However, a lack of ground truth hinders remote sensing efforts. Accordingly, a spectral library was developed for 16 common vegetation species and decayed moss in the ice-free areas of Antarctica using a field spectrometer. In particular, the relative importance of shortwave infrared wavelengths in identifying Antarctic vegetation using spectral similarity comparisons was demonstrated. Due to the lack of available remote sensing images of the study area, simulated images were generated using the developed spectral library. Then, these images were used to evaluate the potential performance of the classification and spectral unmixing according to spectral resolution. We believe that the developed library will enhance our understanding of Antarctic vegetation and will assist in the analysis of various remote sensing data

    The complete mitochondrial genome of an Antarctic moss Chorisodontium aciphyllum (Hook. f. & Wilson) Broth

    No full text
    The cold-adapted species Chorisodontium aciphyllum is widespread in the maritime Antarctic. Here, we sequenced complete mitochondrial genome of C. aciphyllum (GenBank accession number: MK651511), and this is the first report on the mitogenome of the order Dicranales. Its length is 105,766 bp and it contains three ribosomal RNA (rRNA), 24 transfer RNA, and 40 protein-coding genes. The mitochondrial structure and gene order was similar to other bryophytes. Phylogenetic tree based on combined analysis with amino acids sequences of 36 mitochondrial genes in C. aciphyllum, 24 Bryophyta, and three Marchantiophyta showed conserved relationship of the bryophyte in accordance with evolutionary structure
    • …
    corecore