18 research outputs found

    Regorafenib Regulates AD Pathology, Neuroinflammation, and Dendritic Spinogenesis in Cells and a Mouse Model of AD

    Get PDF
    The oral multi-target kinase inhibitor regorafenib, which targets the oncogenic receptor tyrosine kinase (RTK), is an effective therapeutic for patients with advanced gastrointestinal stromal tumors or metastatic colorectal cancer. However, whether regorafenib treatment has beneficial effects on neuroinflammation and Alzheimer's disease (AD) pathology has not been carefully addressed. Here, we report the regulatory function of regorafenib in neuroinflammatory responses and AD-related pathology in vitro and in vivo. Regorafenib affected AKT signaling to attenuate lipopolysaccharide (LPS)-mediated expression of proinflammatory cytokines in BV2 microglial cells and primary cultured microglia and astrocytes. In addition, regorafenib suppressed LPS-induced neuroinflammatory responses in LPS-injected wild-type mice. In 5x FAD mice (a mouse model of AD), regorafenib ameliorated AD pathology, as evidenced by increased dendritic spine density and decreased AĪ² plaque levels, by modulating APP processing and APP processing-associated proteins. Furthermore, regorafenib-injected 5x FAD mice displayed significantly reduced tau phosphorylation at T212 and S214 (AT100) due to the downregulation of glycogen synthase kinase-3 beta (GSK3Ī²) activity. Taken together, our results indicate that regorafenib has beneficial effects on neuroinflammation, AD pathology, and dendritic spine formation in vitro and in vivo.1

    The MAO Inhibitor Tranylcypromine Alters LPS- and A beta-Mediated Neuroinflammatory Responses in Wild-type Mice and a Mouse Model of AD

    Get PDF
    Monoamine oxidase (MAO) has been implicated in neuroinflammation, and therapies targeting MAO are of interest for neurodegenerative diseases. The small-molecule drug tranylcypromine, an inhibitor of MAO, is currently used as an antidepressant and in the treatment of cancer. However, whether tranylcypromine can regulate LPS- and/or AĪ²-induced neuroinflammation in the brain has not been well-studied. In the present study, we found that tranylcypromine selectively altered LPS-induced proinflammatory cytokine levels in BV2 microglial cells but not primary astrocytes. In addition, tranylcypromine modulated LPS-mediated TLR4/ERK/STAT3 signaling to alter neuroinflammatory responses in BV2 microglial cells. Importantly, tranylcypromine significantly reduced microglial activation as well as proinflammatory cytokine levels in LPS-injected wild-type mice. Moreover, injection of tranylcypromine in 5xFAD mice (a mouse model of AD) significantly decreased microglial activation but had smaller effects on astrocyte activation. Taken together, our results suggest that tranylcypromine can suppress LPS- and AĪ²-induced neuroinflammatory responses in vitro and in vivo.1

    Acupuncture Stimulation at GB34 Restores MPTP-Induced Neurogenesis Impairment in the Subventricular Zone of Mice

    No full text
    Adult neurogenesis has recently been considered a new therapeutic paradigm of Parkinsonā€™s disease. In this study, we investigated whether acupuncture restores 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP-) induced impaired neurogenesis in the subventricular zone (SVZ). Male C57BL/6 mice were given 30ā€‰mg/kg of MPTP intraperitoneally once a day for 5 days, after which they were intraperitoneally injected with 50ā€‰mg/kg of bromodeoxyuridine (BrdU) and given acupuncture stimulation at HT7 or GB34 for 12 consecutive days. Dopaminergic neuronal survival in the nigrostriatal pathway and cell proliferation in the SVZ was then evaluated by immunostaining. MPTP administration induced dopaminergic neuronal death in the nigrostriatal pathway, which was suppressed by acupuncture stimulation at GB34. MPTP administration also suppressed the number of BrdU-positive cells and glial fibrillary acidic protein/BrdU-positive cells and increased the number of doublecortin/BrdU-positive cells in the SVZ, which were restored by acupuncture stimulation at GB34. These results indicate that acupuncture stimulation at GB34 restores MPTP-induced neurogenesis impairment

    Proteomic change by Korean Red Ginseng in the substantia nigra of a Parkinson's disease mouse model

    No full text
    Background: Recent studies have shown that Korean Red Ginseng (KRG) successfully protects against dopaminergic neuronal death in the nigrostriatal pathway of a Parkinson's disease (PD) mouse model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration; however, the mechanism has yet to be identified. Therefore, in this study we used two-dimensional electrophoresis to investigate the effects of KRG on the changes in protein expression in the substantia nigra (SN) of MPTP-treated mice. Methods: Male C57BL/6 mice (9 wk old) were intraperitoneally administered MPTP (20Ā mg/kg) four times at 2-h intervals, after which KRG (100Ā mg/kg) was orally administered once a day for 5 d. Two hours after the fifth KRG administration, a pole test was conducted to evaluate motor function, after which the brains were immediately collected. Survival of dopaminergic neurons was measured by immunohistochemistry, and protein expression was measured by two-dimensional electrophoresis and Western blotting. Results: KRG alleviated MPTP-induced behavioral dysfunction and neuronal toxicity in the SN. Additionally, the expression of eight proteins related to neuronal formation and energy metabolism for survival were shown to have changed significantly in response to MPTP treatment or KRG administration. KRG alleviated the downregulated protein expression following MPTP administration, indicating that it may enhance neuronal development and survival in the SN of MPTP-treated mice. Conclusion: These findings indicate that KRG may have therapeutic potential for the treatment of patients with PD. Keywords: Korea Red Ginseng, Parkinson's disease, substantia nigra, two-dimensional electrophoresis, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin

    Sophora flavescens Aiton Decreases MPP+-Induced Mitochondrial Dysfunction in SH-SY5Y Cells

    No full text
    Sophora flavescens Aiton (SF) has been used to treat various diseases including fever and inflammation in China, South Korea and Japan. Several recent reports have shown that SF has anti-inflammatory and anti-apoptotic effects, indicating that it is a promising candidate for treatment of Parkinsonā€™s disease (PD). We evaluated the protective effect of SF against neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+)-induced mitochondrial dysfunction in SH-SY5Y human neuroblastoma cells, an in vitro PD model. SH-SY5Y cells were incubated with SF for 24 h, after which they were treated with MPP+. MPP+-induced cytotoxicity and apoptosis were confirmed by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling assay. MitoSOX red mitochondrial superoxide indicator, tetramethylrhodamine methyl ester perchlorate and Parkin, PTEN-induced putative kinase 1 (PINK1), and DJ-1 immunofluorescent staining were conducted to confirm the mitochondrial function. In addition, western blot was performed to evaluate apoptosis factors (Bcl-2, Bax, caspase-3 and cytochrome c) and mitochondrial function-related factors (Parkin, PINK1 and DJ-1). SF suppressed MPP+-induced cytotoxicity, apoptosis and collapse of mitochondrial membrane potential by inhibiting the increase of reactive oxidative species (ROS) and DNA fragmentation, and controlling Bcl-2, Bax, caspase-3 and cytochrome c expression. Moreover, it attenuated Parkin, PINK1 and DJ-1 expression from MPP+-induced decrease. SF effectively suppressed MPP+-induced cytotoxicity, apoptosis and mitochondrial dysfunction by regulating generation of ROS, disruption of mitochondrial membrane potential, mitochondria-dependent apoptosis and loss or mutation of mitochondria-related PD markers including Parkin, PINK1 and DJ-1

    <i>Rumex japonicus</i> Houtt. Protects Dopaminergic Neurons by Regulating Mitochondrial Function and Gutā€“Brain Axis in In Vitro and In Vivo Models of Parkinsonā€™s Disease

    No full text
    Parkinsonā€™s disease (PD) is the second most common neurodegenerative disease worldwide. Rumex japonicus Houtt. (RJ) has been used to treat gastrointestinal and inflammatory diseases in East Asia. However, it is unknown whether RJ can prevent PD. We investigated the neuroprotective effects of RJ in cellular and animal PD models, focused on mitochondrial function and the gutā€“brain axis. SH-SY5Y cells were treated with RJ (0.01 mg/mL) for 24 h, after which they were treated with the 1-methyl-4-phenylpyridinium ion (MPP+). MPP+-induced apoptosis increased mitochondrial reactive oxygen species and decreased ATP, PINK1, and DJ-1, which were inhibited by RJ. Ten-week-old C57BL/6N male mice were treated with 30 mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 5 days and orally administered 50 or 100 mg/kg of RJ for 14 days. RJ alleviated MPTP-induced behavioral impairment, dopaminergic neuronal death, and mitochondrial dysfunction in the substantia nigra (SN) and suppressed the MPTP-induced increase in lipopolysaccharide, interleukin-1Ī², tumor necrosis factor-Ī±, Ī±-synuclein, and apoptotic factors in the SN and colon. Moreover, RJ inhibited the MPTP-mediated disruption of the tight junction barrier in the colon and bloodā€“brain barrier of mice. Therefore, RJ alleviates MPTP-induced inflammation and dopaminergic neuronal death by maintaining mitochondrial function and tight junctions in the brain and colon
    corecore