26 research outputs found

    A new calcineurin inhibition domain in Cabin1

    No full text
    Calcineurin (CN), a calcium-activated phosphatase, plays a critical role in various biological processes including T cell activation. Cabin1, a calcineurin binding protein 1, has been shown to bind directly to CN using its C-terminal region and inhibit CN activity. However, no increase in CN activity has been found in Cabin1DeltaC T cells, which produce a truncated Cabin1 lacking the C-terminal CN binding region. Here, we report that Cabin1 has additional CN binding domain in its 701-900 amino acid residues. Cabin1 (701-900) blocked both CN-mediated dephosphorylation and nuclear import of NFAT and thus inhibited IL-2 production in response to PMA/ionomycin stimulation. This fact may explain why Cabin1DeltaC mice previously showed no significant defect in CN-mediated signaling pathway

    Cabin1 represses MEF2 transcriptional activity by association with a methyltransferase, SUV39H1

    No full text
    Myocyte enhancer factor 2 (MEF2) plays pivotal roles in various biological processes, and its transcriptional activity is regulated by histone acetylation/deacetylation enzymes in a calcium-dependent fashion. A calcineurin-binding protein 1 (Cabin1) has been shown to participate in repression of MEF2 by recruiting mSin3 and its associated histone deacetylases. Here, we report that histone methylation also takes a part in Cabin1-mediated repression of MEF2. Immunoprecipitate of Cabin1 complex can methylate histone H3 by association with SUV39H1. SUV39H1 increased Cabin1-mediated repression of MEF2 transcriptional activity in MEF2-targeting promoters. The SUV39H1 was revealed to bind to the 501-900-amino acid region of Cabin1, which was distinct from its histone deacetylase-recruiting domain. In addition, the Gal4-Cabin1-(501-900) alone repressed a constitutively active Gal4-tk-promoter, indicating that Cabin1 recruits SUV39H1 and represses transcriptional activity. Finally, both SUV39H1 and Cabin1 were shown to bind on the MEF2 target promoter in a calcium-dependent manner. Thus, Cabin1 recruits chromatin-modifying enzymes, both histone deacetylases and a histone methyltransferase, to repress MEF2 transcriptional activity

    Hydrogen peroxide triggers the proteolytic cleavage and the inactivation of calcineurin

    No full text
    Increases in the levels of reactive oxygen species (ROS) are correlated with a decrease in calcineurin (CN) activity under oxidative or neuropathological conditions. However, the molecular mechanism underlying this ROS-mediated CN inactivation remains unclear. Here, we describe a mechanism for the inactivation of CN by hydrogen peroxide. The treatment of mouse primary cortical neuron cells with Abeta(1-42) peptide and hydrogen peroxide triggered the proteolytic cleavage of CN and decreased its enzymatic activity. In addition, hydrogen peroxide was found to cleave CN in different types of cells. Calcium influx was not involved in CN inactivation during hydrogen peroxide-mediated cleavage, but CN cleavage was partially blocked by chloroquine, indicating that an unidentified lysosomal protease is probably involved in its hydrogen peroxide-mediated cleavage. Treatment with hydrogen peroxide triggered CN cleavage at a specific sequence within its catalytic domain, and the cleaved form of CN had no enzymatic ability to dephosphorylate nuclear factor in activated T cells. Thus, our findings suggest a molecular mechanism by which hydrogen peroxide inactivates CN by proteolysis in ROS-related diseases

    The Combination of Loss of ALDH1L1 Function and Phenformin Treatment Decreases Tumor Growth in KRAS-Driven Lung Cancer

    No full text
    Lung adenocarcinoma cells express high levels of ALDH1L1, an enzyme of the one-carbon pathway that catalyzes the conversion of 10-formyltetrahydrofolate into tetrahydrofolate and NAD(P)H. In this study, we evaluated the potential of ALDH1L1 as a therapeutic target by deleting the Aldh1l1 gene in KrasLA2 mice, a model of spontaneous non-small cell lung cancer (NSCLC). Reporter assays revealed KRAS-mediated upregulation of the ALDH1L1 promoter in human NSCLC cells. Aldh1l1−/− mice exhibited a normal phenotype, with a 10% decrease in Kras-driven lung tumorigenesis. By contrast, the inhibition of oxidative phosphorylation inhibition using phenformin in Aldh1l1−/−; KrasLA2 mice dramatically decreased the number of tumor nodules and tumor area by up to 50%. Furthermore, combined treatment with pan-ALDH inhibitor and phenformin showed a decreased number and area of lung tumors by 70% in the KrasLA2 lung cancer model. Consistent with this, previous work showed that the combination of ALDH1L1 knockdown and phenformin treatment decreased ATP production by as much as 70% in NSCLS cell lines. Taken together, these results suggest that the combined inhibition of ALDH activity and oxidative phosphorylation represents a promising therapeutic strategy for NSCLC

    Crystal Structure of the Kinase Domain of MerTK in Complex with AZD7762 Provides Clues for Structure-Based Drug Development

    No full text
    Aberrant tyrosine-protein kinase Mer (MerTK) expression triggers prosurvival signaling and contributes to cell survival, invasive motility, and chemoresistance in many kinds of cancers. In addition, recent reports suggested that MerTK could be a primary target for abnormal platelet aggregation. Consequently, MerTK inhibitors may promote cancer cell death, sensitize cells to chemotherapy, and act as new antiplatelet agents. We screened an inhouse chemical library to discover novel small-molecule MerTK inhibitors, and identified AZD7762, which is known as a checkpoint-kinase (Chk) inhibitor. The inhibition of MerTK by AZD7762 was validated using an in vitro homogeneous time-resolved fluorescence (HTRF) assay and through monitoring the decrease in phosphorylated MerTK in two lung cancer cell lines. We also determined the crystal structure of the MerTK:AZD7762 complex and revealed the binding mode of AZD7762 to MerTK. Structural information from the MerTK:AZD7762 complex and its comparison with other MerTK:inhibitor structures gave us new insights for optimizing the development of inhibitors targeting MerTK

    FAM188B Downregulation Sensitizes Lung Cancer Cells to Anoikis via EGFR Downregulation and Inhibits Tumor Metastasis In Vivo

    No full text
    Anoikis is a type of apoptosis induced by cell detachment from the extracellular matrix (ECM), which removes mislocalized cells. Acquisition of anoikis resistance is critical for cancer cells to survive during circulation and, thus, metastasize at a secondary site. Although the sensitization of cancer cells to anoikis is a potential strategy to prevent metastasis, the mechanism underlying anoikis resistance is not well defined. Although family with sequence similarity 188 member B (FAM188B) is predicted as a new deubiquitinase (DUB) member, its biological function has not been fully studied. In this study, we demonstrated that FAM188B knockdown sensitized anoikis of lung cancer cell lines expressing WT-EGFR (A549 and H1299) or TKI-resistant EGFR mutant T790M/L858R (H1975). FAM188B knockdown using si-FAM188B inhibited the growth of all three human lung cancer cell lines cultured in both attachment and suspension conditions. FAM188B knockdown resulted in EGFR downregulation and thus decreased its activity. FAM188B knockdown decreased the activities of several oncogenic proteins downstream of EGFR that are involved in anoikis resistance, including pAkt, pSrc, and pSTAT3, with little changes to their protein levels. Intriguingly, si-FAM188B treatment increased EGFR mRNA levels but decreased its protein levels, which was reversed by treatment with the proteasomal inhibitor MG132, indicating that FAM188B regulates EGFR levels via the proteasomal pathway. In addition, cells transfected with si-FAM188B had decreased expression of FOXM1, an oncogenic transcription factor involved in cell growth and survival. Moreover, FAM188B downregulation reduced metastatic characteristics, such as cell adhesion, invasion, and migration, as well as growth in 3D culture conditions. Finally, tail vein injection of si-FAM188B-treated A549 cells resulted in a decrease in lung metastasis and an increase in mice survival in vivo. Taken together, these findings indicate that FAM188B plays an important role in anoikis resistance and metastatic characteristics by maintaining the levels of various oncogenic proteins and/or their activity, leading to tumor malignancy. Our study suggests FAM188B as a potential target for controlling tumor malignancy

    Cholesterol Synthesis Is Important for Breast Cancer Cell Tumor Sphere Formation and Invasion

    No full text
    Breast cancer has a high risk of recurrence and distant metastasis after remission. Controlling distant metastasis is important for reducing breast cancer mortality, but accomplishing this goal remains elusive. In this study, we investigated the molecular pathways underlying metastasis using cells that mimic the breast cancer distant metastasis process. HCC1143 breast cancer cells were cultured under two-dimensional (2D)-adherent, tumor sphere (TS), and reattached (ReA) culture conditions to mimic primary tumors, circulating tumor cells, and metastasized tumors, respectively. ReA cells demonstrated increased TS formation and enhanced invasion capacity compared to the original 2D-cultured parental cells. In addition, ReA cells had a higher frequency of ESA+CD44+CD24− population, which represents a stem-cell-like cell population. RNA sequencing identified the cholesterol synthesis pathway as one of the most significantly increased pathways in TS and ReA cells compared to parental cells, which was verified by measuring intracellular cholesterol levels. Furthermore, the pharmacological inhibition of the cholesterol synthesis pathway decreased the ability of cancer cells to form TSs and invade. Our results suggest that the cholesterol synthesis pathway plays an important role in the distant metastasis of breast cancer cells by augmenting TS formation and invasion capacity

    Reply to Krupenko et al. Comment on โ€œLee et al. The Combination of Loss of ALDH1L1 Function and Phenformin Treatment Decreases Tumor Growth in KRAS-Driven Lung Cancer Cancers 2020, 12, 1382โ€

    No full text
    In the Cancers paper, we observed the increase ALDH1L1 protein expression following oncogenesis, as well as a therapeutic effect, by deleting the Aldh1l1 gene in KrasLA2 mice, a model of spontaneous non-small cell lung cancer (NSCLC) [...

    AIMP3 depletion causes genome instability and loss of sternness in mouse embryonic stem cells

    No full text
    Aminoacyl-tRNA synthetase-interacting multifunctional protein-3 (AIMP3) is a component of the multi-aminoacyl-tRNA synthetase complex and is involved in diverse cellular processes. Given that AIMP3 deficiency causes early embryonic lethality in mice, AIMP3 is expected to play a critical role in early mouse development. To elucidate a functional role of AIMP3 in early mouse development, we induced AIMP3 depletion in mouse embryonic stem cells (mESCs) derived from blastocysts of AIMP3(f/f) ; Cre(ERT2) mice. In the present study, AIMP3 depletion resulted in loss of self-renewal and ability to differentiate to three germ layers in mESCs. AIMP3 depletion led to accumulation of DNA damage by blocking double-strand break repair, in particular homologous recombination. Through microarray analysis, the p53 signaling pathway was identified as being activated in AIMP3-depleted mESCs. Knockdown of p53 rescued loss of stem cell characteristics by AIMP3 depletion in mESCs. These results imply that AIMP3 depletion in mESCs leads to accumulation of DNA damage and p53 transactivation, resulting in loss of stemness. We propose that AIMP3 is involved in maintenance of genome stability and sternness in mESCs
    corecore