37 research outputs found
Distinct effects of rosuvastatin and rosuvastatin/ezetimibe on senescence markers of CD8+ T cells in patients with type 2 diabetes mellitus: a randomized controlled trial
ObjectivesChronic low-grade inflammation is widely recognized as a pathophysiological defect contributing to β-cell failure in type 2 diabetes mellitus (T2DM). Statin therapy is known to ameliorate CD8+ T cell senescence, a mediator of chronic inflammation. However, the additional immunomodulatory roles of ezetimibe are not fully understood. Therefore, we investigated the effect of statin or statin/ezetimibe combination treatment on T cell senescence markers.MethodsIn this two-group parallel and randomized controlled trial, we enrolled 149 patients with T2DM whose low-density lipoprotein cholesterol (LDL-C) was 100 mg/dL or higher. Patients were randomly assigned to either the rosuvastatin group (N=74) or the rosuvastatin/ezetimibe group (N=75). The immunophenotype of peripheral blood mononuclear cells and metabolic profiles were analyzed using samples from baseline and post-12 weeks of medication.ResultsThe fractions of CD8+CD57+ (senescent CD8+ T cells) and CD4+FoxP3+ (Treg) significantly decreased after intervention in the rosuvastatin/ezetimibe group (−4.5 ± 14.1% and −1.2 ± 2.3%, respectively), while these fractions showed minimal change in the rosuvastatin group (2.8 ± 9.4% and 1.4 ± 1.5%, respectively). The degree of LDL-C reduction was correlated with an improvement in HbA1c (R=0.193, p=0.021). Changes in the CD8+CD57+ fraction positively correlated with patient age (R=0.538, p=0.026). Notably, the fraction change in senescent CD8+ T cells showed no significant relationship with changes in either HbA1c (p=0.314) or LDL-C (p=0.592). Finally, the ratio of naïve to memory CD8+ T cells increased in the rosuvastatin/ezetimibe group (p=0.011), but not in the rosuvastatin group (p=0.339).ConclusionsWe observed a reduction in senescent CD8+ T cells and an increase in the ratio of naive to memory CD8+ T cells with rosuvastatin/ezetimibe treatment. Our results demonstrate the immunomodulatory roles of ezetimibe in combination with statins, independent of improvements in lipid or HbA1c levels
Hepatic Immune Microenvironment in Alcoholic and Nonalcoholic Liver Disease
Many types of innate (natural killer cells, natural killer T cells, and Kupffer cells/macrophages) and adaptive (T cells and B cells) immune cells are enriched within the liver and function in liver physiology and pathology. Liver pathology is generally induced by two types of immunologic insults: failure to eliminate antigens derived from the gastrointestinal tract which are important for host defense and an impaired tissue protective tolerance mechanism that helps reduce the negative outcomes of immunopathology. Accumulating evidence from the last several decades suggests that hepatic immune cells play an important role in the pathogenesis of alcoholic and nonalcoholic liver injury and inflammation in humans and mice. Here, we focus on the roles of innate and adaptive immune cells in the development and maintenance of alcoholic liver disease and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Additionally, the pathogenesis of liver disease and new therapeutic targets for preventing and treating alcoholic liver disease and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis are discussed
Mitochondrial Metabolic Signatures in Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. HCC progression and metastasis are closely related to altered mitochondrial metabolism, including mitochondrial stress responses, metabolic reprogramming, and mitoribosomal defects. Mitochondrial oxidative phosphorylation (OXPHOS) defects and reactive oxygen species (ROS) production are attributed to mitochondrial dysfunction. In response to oxidative stress caused by increased ROS production, misfolded or unfolded proteins can accumulate in the mitochondrial matrix, leading to initiation of the mitochondrial unfolded protein response (UPRmt). The mitokines FGF21 and GDF15 are upregulated during UPRmt and their levels are positively correlated with liver cancer development, progression, and metastasis. In addition, mitoribosome biogenesis is important for the regulation of mitochondrial respiration, cell viability, and differentiation. Mitoribosomal defects cause OXPHOS impairment, mitochondrial dysfunction, and increased production of ROS, which are associated with HCC progression in mouse models and human HCC patients. In this paper, we focus on the role of mitochondrial metabolic signatures in the development and progression of HCC. Furthermore, we provide a comprehensive review of cell autonomous and cell non-autonomous mitochondrial stress responses during HCC progression and metastasis
Targeting the Sequences of Circulating Tumor DNA of Cholangiocarcinomas and Its Applications and Limitations in Clinical Practice
Cholangiocarcinoma is a malignant epithelial tumor arising from bile ducts that is frequently fatal. Diagnosis is difficult due to tumor location in the biliary tract. Earlier diagnosis requires less invasive methods of identifying effective biomarkers for cholangiocarcinoma. The present study investigated the genomic profiles of cell-free DNA (cfDNA) and DNA from corresponding primary cholangiocarcinomas using a targeted sequencing panel. Somatic mutations in primary tumor DNA and circulating tumor DNA (ctDNA) were compared and clinical applications of ctDNA validated in patients with cholangiocarcinoma. A comparison of primary tumor DNA and ctDNA identified somatic mutations in patients with early cholangiocarcinomas that showed clinical feasibility for early screening. The predictive value of single-nucleotide variants (SNVs) of preoperative plasma cfDNA positive for somatic mutations of the primary tumor was 42%. The sensitivity and specificity of postoperative plasma SNVs in detecting clinical recurrence were 44% and 45%, respectively. Targetable fibroblast growth factor receptor 2 (FGFR2) and Kirsten rat sarcoma virus (KRAS) mutations were detected in 5% of ctDNA samples from patients with cholangiocarcinoma. These findings showed that genomic profiling of cfDNA was useful in clinical evaluation, although ctDNA had limited ability to detect mutations in cholangiocarcinoma patients. Serial monitoring of ctDNA is important clinically and in assessing real-time molecular aberrations in cholangiocarcinoma patients
Thyroid Hormone Induces Ca2+-Mediated Mitochondrial Activation in Brown Adipocytes
Thyroid hormones, including 3,5,3′-triiodothyronine (T3), cause a wide spectrum of genomic effects on cellular metabolism and bioenergetic regulation in various tissues. The non-genomic actions of T3 have been reported but are not yet completely understood. Acute T3 treatment significantly enhanced basal, maximal, ATP-linked, and proton-leak oxygen consumption rates (OCRs) of primary differentiated mouse brown adipocytes accompanied with increased protein abundances of uncoupling protein 1 (UCP1) and mitochondrial Ca2+ uniporter (MCU). T3 treatment depolarized the resting mitochondrial membrane potential (Ψm) but augmented oligomycin-induced hyperpolarization in brown adipocytes. Protein kinase B (AKT) and mammalian target of rapamycin (mTOR) were activated by T3, leading to the inhibition of autophagic degradation. Rapamycin, as an mTOR inhibitor, blocked T3-induced autophagic suppression and UCP1 upregulation. T3 increases intracellular Ca2+ concentration ([Ca2+]i) in brown adipocytes. Most of the T3 effects, including mTOR activation, UCP1 upregulation, and OCR increase, were abrogated by intracellular Ca2+ chelation with BAPTA-AM. Calmodulin inhibition with W7 or knockdown of MCU dampened T3-induced mitochondrial activation. Furthermore, edelfosine, a phospholipase C (PLC) inhibitor, prevented T3 from acting on [Ca2+]i, UCP1 abundance, Ψm, and OCR. We suggest that short-term exposure of T3 induces UCP1 upregulation and mitochondrial activation due to PLC-mediated [Ca2+]i elevation in brown adipocytes
Growth differentiation factor-15 prevents glucotoxicity and connexin-36 downregulation in pancreatic beta-cells
Pancreatic beta cell dysfunction is a hallmark of type 2 diabetes. Growth differentiation factor 15 (GDF15), which is an energy homeostasis regulator, has been shown to improve several metabolic parameters in the context of diabetes. However, its effects on pancreatic beta-cell remain to be identified. We, therefore, performed experiments using cell models and histological sectioning of wild-type and knock-out GDF15 mice to determine the effect of GDF15 on insulin secretion and cell viability. A bioinformatics analysis was performed to identify GDF15-correlated genes. GDF15 prevents glucotoxicity-mediated altered glucose-stimulated insulin secretion (GSIS) and connexin-36 downregulation. Inhibition of endogenous GDF15 reduced GSIS in cultured mouse beta-cells under standard conditions while it had no impact on GSIS in cells exposed to glucolipotoxicity, which is a diabetogenic condition. Furthermore, this inhibition exacerbated glucolipotoxicity-reduced cell survival. This suggests that endogenous GDF15 in beta-cell is required for cell survival but not GSIS in the context of glucolipotoxicity