823 research outputs found
Progressive Processing of Continuous Range Queries in Hierarchical Wireless Sensor Networks
In this paper, we study the problem of processing continuous range queries in
a hierarchical wireless sensor network. Contrasted with the traditional
approach of building networks in a "flat" structure using sensor devices of the
same capability, the hierarchical approach deploys devices of higher capability
in a higher tier, i.e., a tier closer to the server. While query processing in
flat sensor networks has been widely studied, the study on query processing in
hierarchical sensor networks has been inadequate. In wireless sensor networks,
the main costs that should be considered are the energy for sending data and
the storage for storing queries. There is a trade-off between these two costs.
Based on this, we first propose a progressive processing method that
effectively processes a large number of continuous range queries in
hierarchical sensor networks. The proposed method uses the query merging
technique proposed by Xiang et al. as the basis and additionally considers the
trade-off between the two costs. More specifically, it works toward reducing
the storage cost at lower-tier nodes by merging more queries, and toward
reducing the energy cost at higher-tier nodes by merging fewer queries (thereby
reducing "false alarms"). We then present how to build a hierarchical sensor
network that is optimal with respect to the weighted sum of the two costs. It
allows for a cost-based systematic control of the trade-off based on the
relative importance between the storage and energy in a given network
environment and application. Experimental results show that the proposed method
achieves a near-optimal control between the storage and energy and reduces the
cost by 0.989~84.995 times compared with the cost achieved using the flat
(i.e., non-hierarchical) setup as in the work by Xiang et al.Comment: 41 pages, 20 figure
A case report of type VI dual left anterior descending coronary artery anomaly presenting with non-ST-segment elevation myocardial infarction
BACKGROUND: Type VI dual left anterior descending artery (LAD) is a rare coronary anomaly, the first case of which has recently been described. This is the first report of type VI dual LAD anomaly in which the patient presented with non-ST-segment elevation myocardial infarction and percutaneous coronary intervention was performed in the anomalously originating LAD. CASE PRESENTATION: A 52-year-old man with diabetes, hypertension and hyperlipidemia presented with chest pain without ST elevation on EKG, although the patient’s troponin I level was elevated. Coronary angiography revealed a short LAD originating from the left main coronary artery and a long LAD originating from the proximal portion of the right coronary artery (RCA). Three-dimensional reconstruction of computed tomography of images revealed that the long LAD originated from the proximal RCA and coursed between the right ventricular outflow tract (RVOT) and the aortic root before entering the mid anterior interventricular groove. The high take-off RCA originated underneath the RVOT, pointing downwards and forming an acute angle with the proximal portion of the long LAD. The anomalous long LAD displayed significant stenosis. We performed successful percutaneous coronary intervention (PCI) in the anomalous artery. CONCLUSION: With accurate understanding of the coronary anatomy and appropriate hardware selection, successful PCI can be performed in the in the long LAD in patients with type VI dual LAD anomaly
High-resolution analysis of condition-specific regulatory modules in Saccharomyces cerevisiae
A novel approach for identifying condition-specific regulatory modules in yeast reveals functionally distinct coregulated submodules
Effects of Photoperiod, Water temperature, and Exogenous Hormones on Spawning and Plasma gonadal Steroid in Starry Flounder, Platichthys stellatus
The sexual maturation and spawning of teleosts are regulated by the external environment and the endocrine system. When the environmental conditions are artificially adjusted at a fish farm, the maturity and spawning of fish can be controlled. In this study, sexual maturation and spawning of the starry flounder, Platichthys stellatus, were artificially induced by adjusting the water temperature and photoperiod at a fish farm to accelerate the species’ natural spawning period. One experimental group acted as a control and was exposed to a natural photoperiod and natural water temperature (NPNT). In contrast, another experimental group was exposed to an adjusted environment consisting of a regulated photoperiod and temperature (RPRT). Daylight time was reduced by 10 minutes every 3 days from 13 hours to a duration of 8 hours. The water temperature was first reduced by 1oC every day, starting at 22oC and ending at 8oC, and then raised to 10oC until the spawning period. Both experimental groups were treated with gonadotropin-releasing hormone analog (GnRHa) pellets to induce ovulation. The results show that when the water temperature and photoperiod were artificially controlled, ovulation could be induced 97 days earlier than the natural spawning. Plasma testosterone levels of RPRT and NPNT tended to increase and then decrease 1–2 months before spawning, and plasma levels of 17α,20β-dihydroxy-4-pregnen-3-one increased 1–2 months before spawning. The concentration of estradiol-17β (E2) in plasma was not associated with spawning
Fatty acid desaturase (FADS) gene polymorphisms and insulin resistance in association with serum phospholipid polyunsaturated fatty acid composition in healthy Korean men: cross-sectional study
<p>Abstract</p> <p>Background</p> <p>We investigated the relationship between fatty acid desaturase (<it>FADS</it>) gene polymorphisms and insulin resistance (IR) in association with serum phospholipid polyunsaturated fatty acid (FA) composition in healthy Korean men.</p> <p>Methods</p> <p>Healthy men (n = 576, 30 ~ 79 years old) were genotyped for rs174537 near <it>FADS1 </it>(<it>FEN1</it>-10154G>T), <it>FADS2 </it>(rs174575C>G, rs2727270C>T), and <it>FADS3 </it>(rs1000778C>T) SNPs. Dietary intake, serum phospholipid FA composition and HOMA-IR were measured.</p> <p>Results</p> <p>Fasting insulin and HOMA-IR were significantly higher in the rs174575G allele carriers than the CC homozygotes, but lower in the rs2727270T allele carriers than the CC homozygotes. The proportion of linoleic acid (18:2ω-6, LA) was higher in the minor allele carriers of <it>FEN1</it>-10154G>T, rs174575C>G and rs2727270C>T than the major homozygotes, respectively. On the other hand, the proportions of dihomo-γ-linolenic acid (20:3ω-6, DGLA) and arachidonic acid (20:4ω-6, AA) in serum phospholipids were significantly lower in the minor allele carriers of <it>FEN1</it>-10154 G>T carriers and rs2727270C>T than the major homozygotes respectively. AA was also significantly lower in the rs1000778T allele carriers than the CC homozygotes. HOMA-IR positively correlated with LA and DGLA and negatively with AA/DGLA in total subjects. Interestingly, rs174575G allele carriers showed remarkably higher HOMA-IR than the CC homozygotes when subjects had higher proportions of DLGA (≥1.412% in total serum phospholipid FA composition) (<it>P </it>for interaction = 0.009) or of AA (≥4.573%) (<it>P </it>for interaction = 0.047).</p> <p>Conclusion</p> <p>HOMA-IR is associated with <it>FADS </it>gene cluster as well as with FA composition in serum phospholipids. Additionally, HOMA-IR may be modulated by the interaction between rs174575C>G and the proportion of DGLA or AA in serum phospholipids.</p
Image quality and attenuation values of multi detector CT coronary angiography using high iodine-concentration contrast material: A comparison of the use of iopromide 370 and iomeprol 400
Background: Effects of high iodine-concentration contrast material on the image quality of coronary CT angiography (CCTA) have not been well evaluated
Recovery of synaptic loss and depressive-like behavior induced by GATA1 through blocking of the neuroinflammatory response
GATA1, a member of the GATA transcription factor family, is a critical factor in hematopoietic system development. In a previous study, we demonstrated the increased expression of GATA1 in the dorsolateral prefrontal cortex (dlPFC) of patients suffering from depression and described its role as a transcriptional repressor of synapse-related genes. In this study, we investigated how GATA1 globally altered gene expression using multi-omics approaches. Through the combined analyses of ChIPseq, mRNAseq, and small RNAseq, we profiled genes that are potentially affected by GATA1 in cultured cortical neurons, and Gene Ontology (GO) analysis revealed that GATA1 might be associated with immune-related functions. We hypothesized that GATA1 induces immune activation, which has detrimental effects including synapse loss and depressive-like behavior. To test this hypothesis, we first performed a microglial morphometric analysis of a brain having overexpression of GATA1 because microglia are the resident immune cells of the central nervous system. Fractal analysis showed that the ramification and process length of microglia decreased in brains having GATA1 overexpression compared to the control, suggesting that GATA1 overexpression increases the activation of microglia. Through flow cytometry and immunohistochemical analysis, we found that activated microglia showed pro-inflammatory phenotypes characterized by the expression of CD86 and CD68. Finally, we demonstrated that the effects of GATA1 overexpression including synapse loss and depressive-like behavior could be blocked by inhibiting microglial activation using minocycline. These results will elucidate the regulatory mechanisms of GATA1 that affect pathophysiological conditions such as depression and provide a potential target for the treatment of depression
- …