1,912 research outputs found

    CAM-PAR

    Get PDF
    Graduate School of Artificial IntelligenceAs a sub-task of multi-label classification, a pedestrian attribute recognition (PAR) task aims to train a model to detect various attributes for a given image. To achieve better model performance, It is necessary to understand the characteristic of the pedestrian image. Inevitably, most of the pedestrian images have a low resolution because their source is from surveillance cameras, and it is known that some of the pedestrian attributes are highly correlated with each other. To reflect these characteristics, a number of previous methods are proposed. J.Jia et al., propose disentangled attribute feature learning (DAFL) framework for robust training against noisy pedestrian images. DAFL disentangles one-shared encoder feature to attribute specific features using multi-head attention and achieves significant improvements in model performance. But as additional modules are used for disentanglement, the model becomes more complicated. To address this, we propose Class Activation Map guided Pedestrian Attribute Recognition (CAM-PAR) that disentangle features with no need for additional parameters and explore the use of class activation map in multi-label classification domain. On the other hand, other works focus on relations in pedestrian attributes and propose methods that utilize this prior to predicting attributes. But these previous works are limited to modeling pairwise correlation of pedestrian attributes. We propose a Collaborative Filtering for Attribute Recognition (CFAR) module that models correlation of attribute sets using collaborative filtering and utilizes it for attribute prediction. Experiments on PA100K and RAPv1 datasets show that our proposed model surpasses the baseline method and has achieved competitive results against previous state-of-the-art methods.clos

    Progressive Processing of Continuous Range Queries in Hierarchical Wireless Sensor Networks

    Full text link
    In this paper, we study the problem of processing continuous range queries in a hierarchical wireless sensor network. Contrasted with the traditional approach of building networks in a "flat" structure using sensor devices of the same capability, the hierarchical approach deploys devices of higher capability in a higher tier, i.e., a tier closer to the server. While query processing in flat sensor networks has been widely studied, the study on query processing in hierarchical sensor networks has been inadequate. In wireless sensor networks, the main costs that should be considered are the energy for sending data and the storage for storing queries. There is a trade-off between these two costs. Based on this, we first propose a progressive processing method that effectively processes a large number of continuous range queries in hierarchical sensor networks. The proposed method uses the query merging technique proposed by Xiang et al. as the basis and additionally considers the trade-off between the two costs. More specifically, it works toward reducing the storage cost at lower-tier nodes by merging more queries, and toward reducing the energy cost at higher-tier nodes by merging fewer queries (thereby reducing "false alarms"). We then present how to build a hierarchical sensor network that is optimal with respect to the weighted sum of the two costs. It allows for a cost-based systematic control of the trade-off based on the relative importance between the storage and energy in a given network environment and application. Experimental results show that the proposed method achieves a near-optimal control between the storage and energy and reduces the cost by 0.989~84.995 times compared with the cost achieved using the flat (i.e., non-hierarchical) setup as in the work by Xiang et al.Comment: 41 pages, 20 figure

    The Spitzer c2d Survey Of Nearby Dense Cores. XI. Infrared And Submillimeter Observations Of CB130

    Get PDF
    We present new observations of the CB130 region composed of three separate cores. Using the Spitzer Space Telescope, we detected a Class 0 and a Class II object in one of these, CB130-1. The observed photometric data from Spitzer and ground-based telescopes are used to establish the physical parameters of the Class 0 object. Spectral energy distribution fitting with a radiative transfer model shows that the luminosity of the Class 0 object is 0.14-0.16 L-circle dot, which is low for a protostellar object. In order to constrain the chemical characteristics of the core having the low-luminosity object, we compare our molecular line observations to models of lines including abundance variations. We tested both ad hoc step function abundance models and a series of self-consistent chemical evolution models. In the chemical evolution models, we consider a continuous accretion model and an episodic accretion model to explore how variable luminosity affects the chemistry. The step function abundance models can match observed lines reasonably well. The best-fitting chemical evolution model requires episodic accretion and the formation of CO2 ice from CO ice during the low-luminosity periods. This process removes C from the gas phase, providing a much improved fit to the observed gas-phase molecular lines and the CO2 ice absorption feature. Based on the chemical model result, the low luminosity of CB130-1 is explained better as a quiescent stage between episodic accretion bursts rather than being at the first hydrostatic core stage.NASA 1224608, 1288664, 1407, NNX07AJ72G, 1279198, 1288806, 1342425NSF AST-0607793, AST-0708158Korea government (MEST) 2009-0062866Ministry of Education, Science and Technology 2010-0008704Astronom

    Substance P and beta-endorphin mediate electro-acupuncture induced analgesia in mouse cancer pain model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Opioid analgesics are generally used to combat the pain associated with cancerous conditions. These agents not only inhibit respiratory function and cause constipation, but also induce other significant side effects such as addiction and tolerance, all of which further contribute to a reduced quality of life for cancer patients. Thus, in the present study, the effects of electro-acupuncture treatment (EA) on mechanical allodynia were examined in a cancer pain mouse model.</p> <p>Methods</p> <p>In order to produce a neuropathic cancer pain model, S-180 sarcoma cells were inoculated around the sciatic nerve of left legs of Balb/c mice. Magnetic Resonance Imaging (MRI) scanning confirmed the mass of S-180 cancer cells embedded around the sciatic nerve. Mechanical allodynia was most consistently induced in the mouse sarcoma cell line S-180 (2 × 10<sup>6</sup>sarcoma cells)-treated group compared to all the other groups studied. EA stimulation (2 Hz) was administered daily to ST36 (Zusanli) of S-180 bearing mice for 30 min for 9 days after S-180 inoculation.</p> <p>Results</p> <p>EA treatment significantly prolonged paw withdrawal latency from 5 days after inoculation. It also shortened the cumulative lifting duration from 7 days after inoculation, compared to the tumor control. Also, the overexpression of pain peptide substance P in the dorsal horn of the spinal cord was significantly decreased in the EA-treated group compared to the tumor control on Day 9 post inoculation. Furthermore, EA treatment effectively increased the concentration of β-endorphin in blood and brain samples of the mice to a greater extent than that of the tumor control as well as the normal group. The concentration of β-endorphin for EA treatment group increased by 51.457% in the blood and 12.6% in the brain respectively, compared to the tumor control group.</p> <p>Conclusion</p> <p>The findings of this study suggest that a S-180 cancer pain model is useful as a consistent and short time animal model. It also indicated that EA treatment could be used as an alternative therapeutic method for cancer pain due to a consequent decrease in substance P and increase in β-endorphin levels.</p

    Arabidopsis U2AF65 Regulates Flowering Time and the Growth of Pollen Tubes

    Get PDF
    During pre-mRNA splicing, U2 small nuclear ribonucleoprotein auxiliary factor 65 (U2AF65) interacts with U2AF35 and splicing factor 1 (SF1), allowing for the recognition of the 3′-splice site by the ternary complex. The functional characterization of U2AF65 homologs has not been performed in Arabidopsis thaliana yet. Here, we show that normal plant development, including floral transition, and male gametophyte development, requires two Arabidopsis U2AF65 isoforms (AtU2AF65a and AtU2AF65b). Loss-of-function mutants of these two isoforms displayed opposite flowering phenotypes: atu2af65a mutants showed late flowering, whereas atu2af65b mutants were characterized by slightly early flowering, as compared to that in the wild-type (Col-0) plants. These abnormal flowering phenotypes were well-correlated with the expression patterns of the flowering time genes such as FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT). However, the two atu2af65 mutants did not display any morphological abnormalities or alterations in abiotic stress tests. Double mutation of the AtU2AF65a and AtU2AF65b genes resulted in non-viable seeds due to defective male gametophyte. In vitro pollen germination test revealed that mutations in both AtU2AF65a and AtU2AF65b genes significantly impaired pollen tube growth. Collectively, our findings suggest that two protein isoforms of AtU2AF65 are differentially involved in regulating flowering time and display a redundant role in pollen tube growth

    Controllable modification of transport properties of single-walled carbon nanotube field effect transistors with in situ Al decoration

    Get PDF
    We use an in situ Al decoration technique to control the transport characteristics of single-walled carbon nanotube field effect transistors (SWNT-FETs). Al nanoparticle decoration in a high vacuum caused the devices to change from p -type to n -type FETs, and subsequent exposure to the ambient atmosphere induced a gradual recovery of p -type character. In comparison with the bare SWNT-FETs under high vacuum, the channel-open devices with decorated Al particles exhibited reduced current under ambient conditions. However, selective Al decoration only at the contact resulted in an improved p -type current in ambient air.open182
    corecore