3 research outputs found

    Sedimentation of binary mixtures of like- and oppositely charged colloids: the primitive model or effective pair potentials?

    Full text link
    We study sedimentation equilibrium of low-salt suspensions of binary mixtures of charged colloids, both by Monte Carlo simulations of an effective colloids-only system and by Poisson-Boltzmann theory of a colloid-ion mixture. We show that the theoretically predicted lifting and layering effect, which involves the entropy of the screening ions and a spontaneous macroscopic electric field [J. Zwanikken and R. van Roij, Europhys. Lett. {\bf 71}, 480 (2005)], can also be understood on the basis of an effective colloid-only system with pairwise screened-Coulomb interactions. We consider, by theory and by simulation, both repelling like-charged colloids and attracting oppositely charged colloids, and we find a re-entrant lifting and layering phenomenon when the charge ratio of the colloids varies from large positive through zero to large negative values

    Extended sedimentation profiles in charged colloids: the gravitational length, entropy, and electrostatics

    Full text link
    We have measured equilibrium sedimentation profiles in a colloidal model system with confocal microscopy. By tuning the interactions, we have determined the gravitational length in the limit of hard-sphere-like interactions, and using the same particles, tested a recent theory [R.van Roij, J. Phys. Cond. Mat. 15, S3569, (2003)], which predicts a significantly extended sedimentation profile in the case of charged colloids with long-ranged repulsions, due to a spontaneously formed macroscopic electric field. For the hard-sphere-like system we find that the gravitational length matches that expected. By tuning the buoyancy of the colloidal particles we have shown that a mean field hydrostatic equilibrium description even appears to hold in the case that the colloid volume fraction changes significantly on the length scale of the particle size. The extended sedimentation profiles of the colloids with long-ranged repulsions are well-described by theory. Surprisingly, the theory even seems to hold at concentrations where interactions between the colloids, which are not modeled explicitly, play a considerable role
    corecore