15 research outputs found
Recommended from our members
Calcineurin activation causes retinal ganglion cell degeneration
Purpose: We previously reported that calcineurin, a Ca2+/calmodulin-dependent serine/threonine phosphatase, is activated and proposed that it participates in retinal ganglion cell (RGC) apoptosis in two rodent ocular hypertension models. In this study, we tested whether calcineurin activation by itself, even in the absence of ocular hypertension, is sufficient to cause RGC degeneration. Methods: We compared RGC and optic nerve morphology after adeno-associated virus serotype 2 (AAV2)–mediated transduction of RGCs with constitutively active calcineurin (CaNCA) or unactivated, wild-type calcineurin (CaNwt). Retinas and optic nerves were harvested 7–16 weeks after injection of the AAV into mouse vitreous. In flatmounted retinas, the transduced RGCs were identified with immunohistochemistry. The morphology of the RGCs was revealed by immunostaining for neurofilament SMI32 or by using GFP-M transgenic mice. A modified Sholl analysis was applied to analyze the RGC dendritic morphology. Optic nerve damage was assessed with optic nerve grading according to the Morrison standard. Results: CaNwt and CaNCA were highly expressed in the injected eyes. Compared to the CaNwt-expressing RGCs, the CaNCA-expressing RGCs had smaller somas, smaller dendritic field areas, shorter total dendrite lengths, and simpler dendritic branching patterns. At 16 weeks, the CaNCA-expressing eyes had greater optic nerve damage than the CaNwt-expressing eyes. Conclusions: Calcineurin activation is sufficient to cause RGC dendritic degeneration and optic nerve damage. These data support the hypothesis that calcineurin activation is an important mediator of RGC degeneration, and are consistent with the hypothesis that calcineurin activation may contribute to RGC neurodegeneration in glaucoma
EM Structure of the Ectodomain of Integrin CD11b/CD18 and Localization of Its Ligand-Binding Site Relative to the Plasma Membrane
One-half of the integrin α-subunit Propeller domains contain and extra vWFA domain (αA domain), which mediates integrin binding to extracellular physiologic ligands via its metal-ion-dependent adhesion site (MIDAS). We used electron microscopy to determine the 3D structure of the αA-containing ectodomain of the leukocyte integrin CD11b/CD18 (αMβ2) in its inactive state. A well defined density for αA was observed within a bent ectodomain conformation, while the structure of the ectodomain in complex with the Fab fragment of mAb107, which binds at the MIDAS face of CD11b and stabilizes the inactive state, further revealed that αA is restricted to a relatively small range of orientations relative to the Propeller domain. Using Fab 107 as probe in fluorescent lifetime imaging microscopy (FLIM) revealed that αA is positioned relatively far from the membrane surface in the inactive state, and a systematic orientation search revealed that the MIDAS face would be accessible to extracellular ligand in the inactive state of the full-length cellular integrin. These studies are the first to define the 3D EM structure of an αA-containing integrin ectodomain and to position the ligand-binding face of αA domain in relation to the plasma membrane, providing new insights into current models of integrin activation
Recommended from our members
Microfluidic Chemotaxis Platform for Differentiating the Roles of Soluble and Bound Amyloid-β on Microglial Accumulation
Progressive microglial accumulation at amyloid-β (Aβ) plaques is a well-established signature of the pathology of Alzheimer's disease, but how and why microglia accumulate in the vicinity of Aβ plaques is unknown. To understand the distinct roles of Aβ on microglial accumulation, we quantified microglial responses to week-long lasting gradients of soluble Aβ and patterns of surface-bound Aβ in microfluidic chemotaxis platforms. We found that human microglia chemotaxis in gradients of soluble Aβ42 was most effective at two distinct concentrations of 23 pg.mL−1 and 23 ng.mL−1 Aβ42 in monomers and oligomers. We uncovered that while the chemotaxis at higher Aβ concentrations was exclusively due to Aβ gradients, chemotaxis at lower concentrations was enhanced by Aβ-induced microglial production of MCP-1. Microglial migration was inhibited by surface-bound Aβ42 in oligomers and fibrils above 45 pg.mm−2. Better understanding of microglial migration can provide insights into the pathophysiology of senile plaques in AD
Recommended from our members
alters the connectivity of olfactory neurons in the absence of amyloid plaques in vivo
The amyloid beta peptide aggregates into amyloid plaques at presymptomatic stages of Alzheimer's disease, but the temporal relationship between plaque formation and neuronal dysfunction is poorly understood. Here we demonstrate that the connectivity of the peripheral olfactory neural circuit is perturbed in mice overexpressing human APPsw (Swedish mutation) before the onset of plaques. Expression of human APPsw exclusively in olfactory sensory neurons also perturbs connectivity with associated reductions in odour-evoked gene expression and olfactory acuity. By contrast, olfactory sensory neuron axons project correctly in mice overexpressing wild-type human amyloid precursor protein throughout the brain and in mice overexpressing M671V human APP, a missense mutation that reduces amyloid beta production, exclusively in olfactory sensory neurons. Furthermore, expression of Aβ40 or Aβ42 solely in the olfactory epithelium disrupts the olfactory sensory neuron axon targeting. Our data indicate that altering the structural connectivity and function of highly plastic neural circuits is one of the pleiotropic actions of soluble human amyloid beta
Recommended from our members
The Cortical Signature of Alzheimer's Disease: Regionally Specific Cortical Thinning Relates to Symptom Severity in Very Mild to Mild AD Dementia and is Detectable in Asymptomatic Amyloid-Positive Individuals
Alzheimer's disease (AD) is associated with neurodegeneration in vulnerable limbic and heteromodal regions of the cerebral cortex, detectable in vivo using magnetic resonance imaging. It is not clear whether abnormalities of cortical anatomy in AD can be reliably measured across different subject samples, how closely they track symptoms, and whether they are detectable prior to symptoms. An exploratory map of cortical thinning in mild AD was used to define regions of interest that were applied in a hypothesis-driven fashion to other subject samples. Results demonstrate a reliably quantifiable in vivo signature of abnormal cortical anatomy in AD, which parallels known regional vulnerability to AD neuropathology. Thinning in vulnerable cortical regions relates to symptom severity even in the earliest stages of clinical symptoms. Furthermore, subtle thinning is present in asymptomatic older controls with brain amyloid binding as detected with amyloid imaging. The reliability and clinical validity of AD-related cortical thinning suggests potential utility as an imaging biomarker. This “disease signature” approach to cortical morphometry, in which disease effects are mapped across the cortical mantle and then used to define ROIs for hypothesis-driven analyses, may provide a powerful methodological framework for studies of neuropsychiatric diseases.Psycholog
Goodbye Hartmann trial: a prospective, international, multicenter, observational study on the current use of a surgical procedure developed a century ago
Background: Literature suggests colonic resection and primary anastomosis (RPA) instead of Hartmann's procedure (HP) for the treatment of left-sided colonic emergencies. We aim to evaluate the surgical options globally used to treat patients with acute left-sided colonic emergencies and the factors that leading to the choice of treatment, comparing HP and RPA. Methods: This is a prospective, international, multicenter, observational study registered on ClinicalTrials.gov. A total 1215 patients with left-sided colonic emergencies who required surgery were included from 204 centers during the period of March 1, 2020, to May 31, 2020. with a 1-year follow-up. Results: 564 patients (43.1%) were females. The mean age was 65.9 ± 15.6 years. HP was performed in 697 (57.3%) patients and RPA in 384 (31.6%) cases. Complicated acute diverticulitis was the most common cause of left-sided colonic emergencies (40.2%), followed by colorectal malignancy (36.6%). Severe complications (Clavien-Dindo ≥ 3b) were higher in the HP group (P < 0.001). 30-day mortality was higher in HP patients (13.7%), especially in case of bowel perforation and diffused peritonitis. 1-year follow-up showed no differences on ostomy reversal rate between HP and RPA. (P = 0.127). A backward likelihood logistic regression model showed that RPA was preferred in younger patients, having low ASA score (≤ 3), in case of large bowel obstruction, absence of colonic ischemia, longer time from admission to surgery, operating early at the day working hours, by a surgeon who performed more than 50 colorectal resections. Conclusions: After 100 years since the first Hartmann's procedure, HP remains the most common treatment for left-sided colorectal emergencies. Treatment's choice depends on patient characteristics, the time of surgery and the experience of the surgeon. RPA should be considered as the gold standard for surgery, with HP being an exception
Recommended from our members
Adult Onset Leukodystrophy with Neuroaxonal Spheroids: Clinical, Neuroimaging and Neuropathologic Observations
Pigmented orthochromatic leukodystrophy (POLD) and Hereditary diffuse leukoencephalopathy with spheroids HDLS are two adult onset leukodystrophies with neuroaxonal spheroids presenting with prominent neurobehavioral, cognitive, and motor symptoms. These are familial or sporadic disorders characterized by cerebral white matter degeneration including myelin and axonal loss, gliosis, macrophages, and axonal spheroids. We report clinical, neuroimaging and pathological correlations of four women ages 34–50 years with adult onset leukodystrophy. Their disease course ranged from 1.5–8 years. Three patients had progressive cognitive and behavioral changes whereas one had acute onset. Neuroimaging revealed white matter abnormalities characterized by symmetric, bilateral, T2 hyperintense and T1 hypointense MRI signal involving frontal lobe white matter in all patients. Extensive laboratory investigations were negative apart from abnormalities in some mitochondrial enzymes and immunologic parameters. Autopsies demonstrated severe leukodystrophy with myelin and axonal loss, axonal spheroids, and macrophages with early and severe frontal white matter involvement. The extent and degree of changes outside the frontal lobe appeared to correlate with disease duration. The prominent neurobehavioral deficits and frontal white matter disease provides clinical-pathologic support for association pathways linking distributed neural circuits subserving cognition. These observations lend further support to the notion that white matter disease alone can account for dementia
Recommended from our members
Preservation of Neuronal Number Despite Age-Related Cortical Brain Atrophy in Elderly Subjects Without Alzheimer Disease
Cerebral volume loss has long been associated with normal aging but whether this is due to aging itself or to age-related diseases including incipient Alzheimer disease (AD) is uncertain. To understand the changes that occur in the aging brain, we examined the cerebral cortex of 27 normal individuals ranging in age from 56 to 103 years. None fulfilled the criteria for the neuropathological diagnosis of AD or other neurodegenerative disease. Seventeen of the elderly participants had cognitive testing an average of 6.7 months prior to death. We used quantitative approaches to analyze cortical thickness, neuronal number, and density. Frontal and temporal neocortical regions had clear evidence of cortical thinning with age but total neuronal numbers in frontal and temporal neocortical regions remained relatively constant over a 50-year age range. These data suggest that loss of neuronal and dendritic architecture, rather than loss of neurons, underlies neocortical volume loss with increasing age in the absence of AD