3 research outputs found

    PET/CT Imaging of Zr-89-N-sucDf-Pembrolizumab in Healthy Cynomolgus Monkeys

    Get PDF
    PURPOSE: Programmed cell death-1 receptor (PD-1) and its ligand (PD-L1) are the targets for immunotherapy in many cancer types. Although PD-1 blockade has therapeutic effects, the efficacy differs between patients. Factors contributing to this variability are PD-L1 expression levels and immune cells present in tumors. However, it is not well understood how PD-1 expression in the tumor microenvironment impacts immunotherapy response. Thus, imaging of PD-1-expressing immune cells is of interest. This study aims to evaluate the biodistribution of Zirconium-89 (89Zr)-labeled pembrolizumab, a humanized IgG4 kappa monoclonal antibody targeting PD-1, in healthy cynomolgus monkeys as a translational model of tracking PD-1-positive immune cells. PROCEDURES: Pembrolizumab was conjugated with the tetrafluorophenol-N-succinyl desferal-Fe(III) ester (TFP-N-sucDf) and subsequently radiolabeled with 89Zr. Four cynomolgus monkeys with no previous exposure to humanized monoclonal antibodies received tracer only or tracer co-injected with pembrolizumab intravenously over 5 min. Thereafter, a static whole-body positron emission tomography (PET) scan was acquired with 10 min per bed position on days 0, 2, 5, and 7. Image-derived standardized uptake values (SUVmean) were quantified by region of interest (ROI) analysis. RESULTS: 89Zr-N-sucDf-pembrolizumab was synthesized with high radiochemical purity (> 99 %) and acceptable molar activity (> 7 MBq/nmol). In animals dosed with tracer only, 89Zr-N-sucDf-pembrolizumab distribution in lymphoid tissues such as mesenteric lymph nodes, spleen, and tonsils increased over time. Except for the liver, low radiotracer distribution was observed in all non-lymphoid tissue including the lung, muscle, brain, heart, and kidney. When a large excess of pembrolizumab was co-administered with a radiotracer, accumulation in the lymph nodes, spleen, and tonsils was reduced, suggestive of target-mediated accumulation. CONCLUSIONS: 89Zr-N-sucDf-pembrolizumab shows preferential uptake in the lymphoid tissues including the lymph nodes, spleen, and tonsils. 89Zr-N-sucDf-pembrolizumab may be useful in tracking the distribution of a subset of immune cells in non-human primates and humans. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02760225

    Discovery of [11C]MK-6884: a positron emission tomography (PET) imaging agent for the study of M4 muscarinic receptor positive allosteric modulators (PAMs) in neurodegenerative diseases

    Get PDF
    The measurement of receptor occupancy (RO) using positron emission tomography (PET) has been instrumental in guiding discovery and development of CNS directed therapeutics. We and others have investigated muscarinic acetylcholine receptor 4 (M4) positive allosteric modulators (PAMs) for the treatment of symptoms associated with neuropsychiatric disorders. In this article, we describe the synthesis, in vitro, and in vivo characterization of a series of central pyridine-related M4 PAMs that can be conveniently radiolabeled with carbon-11 as PET tracers for the in vivo imaging of an allosteric binding site of the M4 receptor. We first demonstrated its feasibility by mapping the receptor distribution in mouse brain and confirming that a lead molecule 1 binds selectively to the receptor only in the presence of the orthosteric agonist carbachol. Through a competitive binding affinity assay and a number of physiochemical properties filters, several related compounds were identified as candidates for in vivo evaluation. These candidates were then radiolabeled with 11C and studied in vivo in rhesus monkeys. This research eventually led to the discovery of the clinical radiotracer candidate [11C]MK-6884

    Magnetic resonance imaging detects white adipose tissue beiging in mice following PDE10A inhibitor treatment

    No full text
    Weight gain is a common harmful side effect of atypical antipsychotics used for schizophrenia treatment. Conversely, treatment with the novel phosphodiesterase-10A (PDE10A) inhibitor MK-8189 in clinical trials led to significant weight reduction, especially in patients with obesity. This study aimed to understand and describe the mechanism underlying this observation, which is essential to guide clinical decisions. We hypothesized that PDE10A inhibition causes beiging of white adipose tissue (WAT), leading to weight loss. Magnetic resonance imaging (MRI) methods were developed, validated, and applied in a diet-induced obesity mouse model treated with a PDE10A inhibitor THPP-6 or vehicle for measurement of fat content and vascularization of adipose tissue. Treated mice showed significantly lower fat fraction in white and brown adipose tissue, and increased perfusion and vascular density in WAT versus vehicle, confirming the hypothesis, and matching the effect of CL-316,243, a compound known to cause adipose tissue beiging. The in vivo findings were validated by qPCR revealing upregulation of Ucp1 and Pcg1-α genes, known markers of WAT beiging, and angiogenesis marker VegfA in the THPP-6 group. This work provides a detailed understanding of the mechanism of action of PDE10A inhibitor treatment on adipose tissue and body weight and will be valuable to guide both the use of MK-8189 in schizophrenia and the potential application of the target for weight loss indication
    corecore