30 research outputs found

    Automated Text Analysis Based on Skip-Gram Model for Food Evaluation in Predicting Consumer Acceptance

    Get PDF
    The purpose of this paper is to evaluate food taste, smell, and characteristics from consumers’ online reviews. Several studies in food sensory evaluation have been presented for consumer acceptance. However, these studies need taste descriptive word lexicon, and they are not suitable for analyzing large number of evaluators to predict consumer acceptance. In this paper, an automated text analysis method for food evaluation is presented to analyze and compare recently introduced two jjampong ramen types (mixed seafood noodles). To avoid building a sensory word lexicon, consumers’ reviews are collected from SNS. Then, by training word embedding model with acquired reviews, words in the large amount of review text are converted into vectors. Based on these words represented as vectors, inference is performed to evaluate taste and smell of two jjampong ramen types. Finally, the reliability and merits of the proposed food evaluation method are confirmed by a comparison with the results from an actual consumer preference taste evaluation

    The FERET evaluation methodology for face-recognition algorithms

    No full text

    Respiratory Rate Estimation Combining Autocorrelation Function-Based Power Spectral Feature Extraction with Gradient Boosting Algorithm

    No full text
    Various machine learning models have been used in the biomedical engineering field, but only a small number of studies have been conducted on respiratory rate estimation. Unlike ensemble models using simple averages of basic learners such as bagging, random forest, and boosting, the gradient boosting algorithm is based on effective iteration strategies. This gradient boosting algorithm is just beginning to be used for respiratory rate estimation. Based on this, we propose a novel methodology combining an autocorrelation function-based power spectral feature extraction process with the gradient boosting algorithm to estimate respiratory rate since we acquire the respiration frequency using the autocorrelation function-based power spectral feature extraction that finds the time domain’s periodicity. The proposed methodology solves overfitting for the training datasets because we obtain the data dimension by applying autocorrelation function-based power spectral feature extraction and then split the long-resampled wave signal to increase the number of input data samples. The proposed model provides accurate respiratory rate estimates and offers a solution for reliably managing the estimation uncertainty. In addition, the proposed method presents a more precise estimate than conventional respiratory rate measurement techniques

    Respiratory Rate Estimation Combining Autocorrelation Function-Based Power Spectral Feature Extraction with Gradient Boosting Algorithm

    No full text
    Various machine learning models have been used in the biomedical engineering field, but only a small number of studies have been conducted on respiratory rate estimation. Unlike ensemble models using simple averages of basic learners such as bagging, random forest, and boosting, the gradient boosting algorithm is based on effective iteration strategies. This gradient boosting algorithm is just beginning to be used for respiratory rate estimation. Based on this, we propose a novel methodology combining an autocorrelation function-based power spectral feature extraction process with the gradient boosting algorithm to estimate respiratory rate since we acquire the respiration frequency using the autocorrelation function-based power spectral feature extraction that finds the time domain’s periodicity. The proposed methodology solves overfitting for the training datasets because we obtain the data dimension by applying autocorrelation function-based power spectral feature extraction and then split the long-resampled wave signal to increase the number of input data samples. The proposed model provides accurate respiratory rate estimates and offers a solution for reliably managing the estimation uncertainty. In addition, the proposed method presents a more precise estimate than conventional respiratory rate measurement techniques

    Dual-Sensor Signals Based Exact Gaussian Process-Assisted Hybrid Feature Extraction and Weighted Feature Fusion for Respiratory Rate and Uncertainty Estimations

    No full text
    Accurately estimating respiratory rate (RR) has become essential for patients and the elderly. Hence, we propose a novel method that uses exact Gaussian process regression (EGPR)-assisted hybrid feature extraction and feature fusion based on photoplethysmography and electrocardiogram signals to improve the reliability of accurate RR and uncertainty estimations. First, we obtain the power spectral features and use the multi-phase feature model to compensate for insufficient input data. Then, we combine four different feature sets and choose features with high weights using a robust neighbor component analysis. The proposed EGPR algorithm provides a confidence interval representing the uncertainty. Therefore, the proposed EGPR algorithm, including hybrid feature extraction and weighted feature fusion, is an excellent model with improved reliability for accurate RR estimation. Furthermore, the proposed EGPR methodology is likely the only one currently available that provides highly stable variation and confidence intervals. The proposed EGPR-MF, 0.993 breath per minute (bpm), and EGPR-feature fusion, 1.064 (bpm), show the lowest mean absolute error compared to the other models

    A Spatio-Temporal Graph Convolutional Network Model for Internet of Medical Things (IoMT)

    No full text
    In order to provide intelligent and efficient healthcare services in the Internet of Medical Things (IoMT), human action recognition (HAR) can play a crucial role. As a result of their stringent requirements, such as high computational complexity and memory efficiency, classical HAR techniques are not applicable to modern and intelligent healthcare services, e.g., IoMT. To address these issues, we present in this paper a novel HAR technique for healthcare services in IoMT. This model, referred to as the spatio-temporal graph convolutional network (STGCN), primarily aims at skeleton-based human–machine interfaces. By independently extracting spatial and temporal features, STGCN significantly reduces information loss. Spatio-temporal information is extracted independently of the exact spatial and temporal point, ensuring the extraction of useful features for HAR. Using only joint data and fewer parameters, we demonstrate that our proposed STGCN achieved 92.2% accuracy on the skeleton dataset. Unlike multi-channel methods, which use a combination of joint and bone data and have a large number of parameters, multi-channel methods use both joint and bone data. As a result, STGCN offers a good balance between accuracy, memory consumption, and processing time, making it suitable for detecting medical conditions

    The FERET September 1996 Database and Evaluation Procedure

    No full text
    . Two of the most critical requirements in support of producing reliable face-recognition systems are a large database of facial images and a testing procedure to evaluate systems. The Face Recognition Technology (FERET) program has addressed both issues through the FERET database of facial images and the establishment of the FERET tests. In this paper, we report on the FERET database and the September 1996 FERET test. This test is the third in a series of supervised face-recognition test administered under the FERET program

    The FERET Evaluation Methodology for Face-Recognition Algorithms

    No full text
    Two of the most critical requirements in support of producing reliable face-recognition systems are a large database of facial images and a testing procedure to evaluate systems. The Face Recognition Technology (FERET) program has addressed both issues through the FERET database of facial images and the establishment of the FERET tests. To date, 14,126 images from 1199 individuals are included in the FERET database, which is divided into development and sequestered portions of the database. In September 1996, the FERET program administered the third in a series of FERET face-recognition tests. The primary objectives of the third test were to (1) assess the state of the art, (2) identify future areas of research, and (3) measure algorithm performance. 1 Introduction Over the last decade, face recognition has become an active area of research in computer vision, neuroscience, and psychology. Progress has advanced to the point that face-recognition systems are being demonstrated in real-..
    corecore