2,933 research outputs found
A Unified Approach for Network Information Theory
In this paper, we take a unified approach for network information theory and
prove a coding theorem, which can recover most of the achievability results in
network information theory that are based on random coding. The final
single-letter expression has a very simple form, which was made possible by
many novel elements such as a unified framework that represents various network
problems in a simple and unified way, a unified coding strategy that consists
of a few basic ingredients but can emulate many known coding techniques if
needed, and new proof techniques beyond the use of standard covering and
packing lemmas. For example, in our framework, sources, channels, states and
side information are treated in a unified way and various constraints such as
cost and distortion constraints are unified as a single joint-typicality
constraint.
Our theorem can be useful in proving many new achievability results easily
and in some cases gives simpler rate expressions than those obtained using
conventional approaches. Furthermore, our unified coding can strictly
outperform existing schemes. For example, we obtain a generalized
decode-compress-amplify-and-forward bound as a simple corollary of our main
theorem and show it strictly outperforms previously known coding schemes. Using
our unified framework, we formally define and characterize three types of
network duality based on channel input-output reversal and network flow
reversal combined with packing-covering duality.Comment: 52 pages, 7 figures, submitted to IEEE Transactions on Information
theory, a shorter version will appear in Proc. IEEE ISIT 201
Noisy Network Coding with Partial DF
In this paper, we propose a noisy network coding integrated with partial
decode-and-forward relaying for single-source multicast discrete memoryless
networks (DMN's). Our coding scheme generalizes the
partial-decode-compress-and-forward scheme (Theorem 7) by Cover and El Gamal.
This is the first time the theorem is generalized for DMN's such that each
relay performs both partial decode-and-forward and compress-and-forward
simultaneously. Our coding scheme simultaneously generalizes both noisy network
coding by Lim, Kim, El Gamal, and Chung and distributed decode-and-forward by
Lim, Kim, and Kim. It is not trivial to combine the two schemes because of
inherent incompatibility in their encoding and decoding strategies. We solve
this problem by sending the same long message over multiple blocks at the
source and at the same time by letting the source find the auxiliary covering
indices that carry information about the message simultaneously over all
blocks.Comment: 5 pages, 1 figure, to appear in Proc. IEEE ISIT 201
CP violating dimuon charge asymmetry in general left-right models
The recently measured charge asymmetry of like-sign dimuon events by the D0
collaboration at Tevatron shows the 3.9 \sigma\ deviation from the standard
model prediction. In order to solve this mismatch, we investigate the
right-handed current contributions to and
mixings which are the major source of the like-sign dimuon events in production in general left-right models without imposing manifest or
pseudo-manifest left-right symmetry. We find the allowed region of new physics
parameters satisfying the current experimental data.Comment: 9 pages, 4 figure
A New Achievable Scheme for Interference Relay Channels
We establish an achievable rate region for discrete memoryless interference
relay channels that consist of two source-destination pairs and one or more
relays. We develop an achievable scheme combining Han-Kobayashi and noisy
network coding schemes. We apply our achievability to two cases. First, we
characterize the capacity region of a class of discrete memoryless interference
relay channels. This class naturally generalizes the injective deterministic
discrete memoryless interference channel by El Gamal and Costa and the
deterministic discrete memoryless relay channel with orthogonal receiver
components by Kim. Moreover, for the Gaussian interference relay channel with
orthogonal receiver components, we show that our scheme achieves a better sum
rate than that of noisy network coding.Comment: 18 pages, 4 figure
Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method
In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2
Singlet Fermionic Dark Matter with Dark
We present a fermionic dark matter model mediated by the hidden gauge boson.
We assume the QED-like hidden sector which consists of a Dirac fermion and
U(1) gauge symmetry, and introduce an additional scalar electroweak doublet
field with the U(1) charge as a mediator. The hidden U(1) symmetry is
spontaneously broken by the electroweak symmetry breaking and there exists a
massive extra neutral gauge boson in this model which is the mediator between
the hidden and visible sectors. Due to the U(1) charge, the additional
scalar doublet does not couple to the Standard Model fermions, which leads to
the Higgs sector of type I two Higgs doublet model. The new gauge boson couples
to the Standard Model fermions with couplings proportional to those of the
ordinary boson but very suppressed, thus we call it the dark boson. We
study the phenomenology of the dark boson and the Higgs sector, and show
the hidden fermion can be the dark matter candidate.Comment: 10 pages, 3 figure
- …