18 research outputs found

    Potential of the miR-200 Family as a Target for Developing Anti-Cancer Therapeutics

    No full text
    MicroRNAs (miRNAs) are small non-coding RNAs (18–24 nucleotides) that play significant roles in cell proliferation, development, invasion, cancer development, cancer progression, and anti-cancer drug resistance. miRNAs target multiple genes and play diverse roles. miRNAs can bind to the 3′UTR of target genes and inhibit translation or promote the degradation of target genes. miR-200 family miRNAs mostly act as tumor suppressors and are commonly decreased in cancer. The miR-200 family has been reported as a valuable diagnostic and prognostic marker. This review discusses the clinical value of the miR-200 family, focusing on the role of the miR-200 family in the development of cancer and anti-cancer drug resistance. This review also provides an overview of the factors that regulate the expression of the miR-200 family, targets of miR-200 family miRNAs, and the mechanism of anti-cancer drug resistance regulated by the miR-200 family

    The Potential of Senescence as a Target for Developing Anticancer Therapy

    No full text
    Senescence occurs in response to various stimuli. Senescence has attracted attention because of its potential use in anticancer therapy as it plays a tumor-suppressive role. It also promotes tumorigeneses and therapeutic resistance. Since senescence can induce therapeutic resistance, targeting senescence may help to overcome therapeutic resistance. This review provides the mechanisms of senescence induction and the roles of the senescence-associated secretory phenotype (SASP) in various life processes, including therapeutic resistance and tumorigenesis. The SASP exerts pro-tumorigenic or antitumorigenic effects in a context-dependent manner. This review also discusses the roles of autophagy, histone deacetylases (HDACs), and microRNAs in senescence. Many reports have suggested that targeting HDACs or miRNAs could induce senescence, which, in turn, could enhance the effects of current anticancer drugs. This review presents the view that senescence induction is a powerful method of inhibiting cancer cell proliferation

    Roles of RNA Methylations in Cancer Progression, Autophagy, and Anticancer Drug Resistance

    No full text
    RNA methylations play critical roles in RNA processes, including RNA splicing, nuclear export, nonsense-mediated RNA decay, and translation. Regulators of RNA methylations have been shown to be differentially expressed between tumor tissues/cancer cells and adjacent tissues/normal cells. N6-methyladenosine (m6A) is the most prevalent internal modification of RNAs in eukaryotes. m6A regulators include m6A writers, m6A demethylases, and m6A binding proteins. Since m6A regulators play important roles in regulating the expression of oncogenes and tumor suppressor genes, targeting m6A regulators can be a strategy for developing anticancer drugs. Anticancer drugs targeting m6A regulators are in clinical trials. m6A regulator-targeting drugs could enhance the anticancer effects of current chemotherapy drugs. This review summarizes the roles of m6A regulators in cancer initiation and progression, autophagy, and anticancer drug resistance. The review also discusses the relationship between autophagy and anticancer drug resistance, the effect of high levels of m6A on autophagy and the potential values of m6A regulators as diagnostic markers and anticancer therapeutic targets

    Targeting HDAC6 to Overcome Autophagy-Promoted Anti-Cancer Drug Resistance

    No full text
    Histone deacetylases (HDACs) regulate gene expression through the epigenetic modification of chromatin structure. HDAC6, unlike many other HDACs, is present in the cytoplasm. Its deacetylates non-histone proteins and plays diverse roles in cancer cell initiation, proliferation, autophagy, and anti-cancer drug resistance. The development of HDAC6-specific inhibitors has been relatively successful. Mechanisms of HDAC6-promoted anti-cancer drug resistance, cancer cell proliferation, and autophagy are discussed. The relationship between autophagy and anti-cancer drug resistance is discussed. The effects of combination therapy, which includes HDAC6 inhibitors, on the sensitivity of cancer cells to chemotherapeutics and immune checkpoint blockade are presented. A summary of clinical trials involving HDAC6-specific inhibitors is also presented. This review presents HDAC6 as a valuable target for developing anti-cancer drugs

    The Potential of Senescence as a Target for Developing Anticancer Therapy

    No full text
    Senescence occurs in response to various stimuli. Senescence has attracted attention because of its potential use in anticancer therapy as it plays a tumor-suppressive role. It also promotes tumorigeneses and therapeutic resistance. Since senescence can induce therapeutic resistance, targeting senescence may help to overcome therapeutic resistance. This review provides the mechanisms of senescence induction and the roles of the senescence-associated secretory phenotype (SASP) in various life processes, including therapeutic resistance and tumorigenesis. The SASP exerts pro-tumorigenic or antitumorigenic effects in a context-dependent manner. This review also discusses the roles of autophagy, histone deacetylases (HDACs), and microRNAs in senescence. Many reports have suggested that targeting HDACs or miRNAs could induce senescence, which, in turn, could enhance the effects of current anticancer drugs. This review presents the view that senescence induction is a powerful method of inhibiting cancer cell proliferation

    HDAC2 as a target for developing anti-cancer drugs

    No full text
    Histone deacetylases (HDACs) deacetylate histones H3 and H4. An imbalance between histone acetylation and deacetylation can lead to various diseases. HDAC2 is present in the nucleus. It plays a critical role in modifying chromatin structures and regulates the expression of various genes by functioning as a transcriptional regulator. The roles of HDAC2 in tumorigenesis and anti-cancer drug resistance are discussed in this review. Several reports suggested that HDAC2 is a prognostic marker of various cancers. The roles of microRNAs (miRNAs) that directly regulate the expression of HDAC2 in tumorigenesis are also discussed in this review. This review also presents HDAC2 as a valuable target for developing anti-cancer drugs
    corecore