43 research outputs found

    Comparison of Serum Ferritin and Vitamin D in Association with the Severity of Nonalcoholic Fatty Liver Disease in Korean Adults

    No full text
    BackgroundIncreased serum ferritin and decreased vitamin D levels associated with nonalcoholic fatty liver disease (NAFLD). However, their association with the severity of NAFLD has not been fully evaluated. The aim of this study was to compare the association of serum ferritin and 25(OH)D3 levels with the severity of ultrasonographically detected NAFLD (US-NAFLD) and hepatic steatosis defined by fatty liver index (FLI) in Korean adults.MethodsA cross-sectional analysis of clinical and anthropometric data, including serum ferritin and 25(OH)D3, from men (n=295) and women (n=263) who underwent a routine health check-up in 2012.ResultsIn men, with an increase in the quartile of serum ferritin level, the incidences of subjects with metabolic syndrome (P=0.002), US-NAFLD (P=0.041), and FLI ≥60 (P=0.010) were significantly elevated. In women, the incidence of subjects with US-NAFLD was also significantly elevated with increases in the serum ferritin quartile (P=0.012). Regarding 25(OH)D3, no statistical differences were observed among the different quartiles in either gender. Serum ferritin level significantly increased as the severity of US-NAFLD increased (P<0.001); however, no significant differences in 25(OH)D3 level were observed in men. No significant differences in either serum ferritin or 25(OH)D3 level were observed among women with different levels of severity of US-NAFLD.ConclusionIncreased serum ferritin level showed a closer association with severity of NAFLD compared with level of serum vitamin D, suggesting that serum ferritin level may be a better marker than vitamin D level for predicting the severity of US-NAFLD and hepatic steatosis in a clinical setting

    Prevalent Rate of Nonalbuminuric Renal Insufficiency and Its Association with Cardiovascular Disease Event in Korean Type 2 Diabetes

    No full text
    BackgroundNonalbuminuric renal insufficiency is a unique category of diabetic kidney diseases. The objectives of the study were to evaluate prevalent rate of nonalbuminuric renal insufficiency and to investigate its relationship with previous cardiovascular disease (CVD) event in Korean patients with type 2 diabetes mellitus (T2DM).MethodsLaboratory and clinical data of 1,067 subjects with T2DM were obtained and reviewed. Study subjects were allocated into four subgroups according to the CKD classification. Major CVD events were included with coronary, cerebrovascular, and peripheral vascular events.ResultsNonalbuminuric stage ≥3 CKD group, when compared with albuminuric stage ≥3 CKD group, had shorter diabetic duration, lower concentrations of glycated hemoglobin, high density lipoprotein cholesterol, and high-sensitivity C-reactive protein, lower prevalent rates of retinopathy and previous CVD, and higher rate of treatment with angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers. Nonalbuminuric stage ≥3 CKD group showed a greater association with prior CVD events than no CKD group; however, albuminuric stage ≥3 CKD group made addition to increase prevalence of prior CVD events significantly when CKD categories were applied as covariates. Association of prior CVD events, when compared with normal estimated glomerular filtration rate (eGFR) and nonalbuminuria categories, became significant for declined eGFR, which was higher for eGFR of <30 mL/min/1.73 m2, and albuminuria.ConclusionThe results show that subjects with nonalbuminuric stage ≥3 CKD is significantly interrelated with occurrence of prior CVD events than those with normal eGFR with or without albuminuria. Comparing with normal eGFR and nonalbuminuria categories, the combination of increased degree of albuminuria and declined eGFR is becoming significant for the association of prior CVD events

    1′-Acetoxyeugenol Acetate Isolated from Thai Ginger Induces Apoptosis in Human Ovarian Cancer Cells by ROS Production via NADPH Oxidase

    No full text
    The rhizomes of Alpinia galanga (Thai ginger) have been used extensively as a spice in Southeast Asian and Arabian cuisines and reported to possess a wide range of biological properties, such as antioxidant, antimicrobial, and antibacterial. However, the specific molecular and cellular mechanisms underlying the anti-tumor effects induced by Thai ginger and its corresponding active compounds have been poorly characterized. We found that upon EtOH extraction, Thai ginger extract exhibits cytotoxic activity (IC50 < 10 μg/mL) and triggers cell death via caspase-dependent apoptosis in human ovarian cancer cells. Among the three major compounds isolated from the extract, 1′-acetoxyeugenol acetate (AEA) exhibited potent cytotoxic activity in human ovarian cancer cells, SKOV3 and A2780. AEA induced apoptotic cell death through the activation of caspases-3 and -9. Notably, AEA enhanced the intracellular levels of reactive oxygen species (ROS), and the application of an antioxidant markedly reversed AEA-induced apoptosis of ovarian cancer cells. The knockdown of p47phox, a subunit of NADPH oxidase, suppressed both the pro-apoptotic and ROS-inducing effects of AEA. Additionally, the activation of the mitogen-activated protein kinase (MAPK) pathway by AEA through ROS regulation was found to be involved in AEA-induced apoptosis. Altogether, these results suggest that AEA exhibits potent apoptosis-inducing activity through the activation of the intrinsic pathway via ROS-mediated MAPK signaling in human ovarian cancer cells

    Characterization of Deletions of the HBA and HBB Loci by Array Comparative Genomic Hybridization

    No full text
    Thalassemia is among the most common genetic diseases worldwide. α-Thalassemia is usually caused by deletion of one or more of the duplicated HBA genes on chromosome 16. In contrast, most β-thalassemia results from point mutations that decrease or eliminate expression of the HBB gene on chromosome 11. Deletions within the HBB locus result in thalassemia or hereditary persistence of fetal Hb. Although routine diagnostic testing cannot distinguish thalassemia deletions from point mutations, deletional hereditary persistence of fetal Hb is notable for having an elevated HbF level with a normal mean corpuscular volume. A small number of deletions accounts for most α-thalassemias; in contrast, there are no predominant HBB deletions causing β-thalassemia. To facilitate the identification and characterization of deletions of the HBA and HBB globin loci, we performed array-based comparative genomic hybridization using a custom oligonucleotide microarray. We accurately mapped the breakpoints of known and previously uncharacterized HBB deletions defining previously uncharacterized deletion breakpoints by PCR amplification and sequencing. The array also successfully identified the common HBA deletions - SEA and - FIL. In summary, comparative genomic hybridization can be used to characterize deletions of the HBA and HBB loci, allowing high-resolution characterization of novel deletions that are not readily detected by PCR-based methods.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Fermented <i>Perilla frutescens</i> Ameliorates Depression-like Behavior in Sleep-Deprivation-Induced Stress Model

    No full text
    Excessive stress plays a critical role in the pathogenesis of mood disorders such as depression. Fermented natural products have recently attracted attention because of their health benefits. We evaluated the antidepressant-like efficacy of fermented Perilla frutescens (FPF), and its underlying mechanisms, in sleep deprivation (SD)-induced stress mice. SD-stressed mice revealed a remarkable increase in the immobility time in both forced swimming test and tail suspension test; this increase was ameliorated by treatment with FPF at doses of 100 and 150 mg/kg. FPF treatment also reduced the level of stress hormones such as corticosterone and adrenocorticotropic hormone. Additionally, FPF increased the levels of serotonin and dopamine which were significantly decreased in the brain tissues of SD-stressed mice. The increased expression of proinflammatory cytokines, such as TNF-α and IL1β, and the decreased expression of brain-derived neurotrophic factor (BDNF) in the stressed mice were significantly reversed by FPF treatment. Furthermore, FPF also increased phosphorylation of tropomyosin receptor kinase B (TrkB), extracellular regulated protein kinase (ERK), and cAMP response element binding protein (CREB). Among the six components isolated from FPF, protocatechuic acid and luteolin-7-O-glucuronide exhibited significant antidepressant-like effects, suggesting that they are major active components. These findings suggest that FPF has therapeutic potential for SD-induced stress, by correcting dysfunction of hypothalamic-pituitary-adrenal axis and modulating the BDNF/TrkB/ERK/CREB signaling pathway

    Duplicated antibiotic resistance genes reveal ongoing selection and horizontal gene transfer in bacteria

    No full text
    Abstract Horizontal gene transfer (HGT) and gene duplication are often considered as separate mechanisms driving the evolution of new functions. However, the mobile genetic elements (MGEs) implicated in HGT can copy themselves, so positive selection on MGEs could drive gene duplications. Here, we use a combination of modeling and experimental evolution to examine this hypothesis and use long-read genome sequences of tens of thousands of bacterial isolates to examine its generality in nature. Modeling and experiments show that antibiotic selection can drive the evolution of duplicated antibiotic resistance genes (ARGs) through MGE transposition. A key implication is that duplicated ARGs should be enriched in environments associated with antibiotic use. To test this, we examined the distribution of duplicated ARGs in 18,938 complete bacterial genomes with ecological metadata. Duplicated ARGs are highly enriched in bacteria isolated from humans and livestock. Duplicated ARGs are further enriched in an independent set of 321 antibiotic-resistant clinical isolates. Our findings indicate that duplicated genes often encode functions undergoing positive selection and horizontal gene transfer in microbial communities

    Nanostructured Glycopolymer Augmented Liposomes to Elucidate Carbohydrate-Mediated Targeting

    No full text
    Carbohydrate receptors on alveolar macrophages are attractive targets for receptor-mediated delivery of nanostructured therapeutics. In this study, we employed reversible addition fragmentation chain transfer polymerization to synthesize neoglycopolymers, consisting of mannose- and galactose methacrylate-based monomers copolymerized with cholesterol methacrylate for use in functional liposome studies. Glycopolymer-functional liposomes were employed to elucidate macrophage mannose receptor (CD206) and macrophage galactose-type lectin (CD301) targeting in both primary macrophage and immortal macrophage cell lines. Expression of CD206 and CD301 was observed to vary significantly between cell lines (murine alveolar macrophage, murine bone marrow-derived macrophage, RAW264.7, and MH-S), which has significant implications in in vitro targeting and uptake studies. Synthetic glycopolymers and glycopolymer augmented liposomes demonstrated specific receptor-mediated uptake in a manner dependent on carbohydrate receptor expression. These results establish a platform capable of probing endogenous carbohydrate receptor-mediated targeting via glycofunctional nanomaterials
    corecore