17 research outputs found

    [5-Hydroxy-3-phenyl-1-(pyridin-2-yl)pyrazol-5-olato]diphenylboron

    Get PDF
    In the title compound, C26H20BN3O, the B atom has tetra­hedral geometry and is linked to two phenyl rings, the O atom of the hy­droxy­pyrazole ring and the N atom of the pyridinyl ring. A six-membered BOCNCN ring forms by coordination of the B atom and the pyridinyl N atom. The BOCNCN ring has an envelope conformation [dihedral angle = 36.7 (1)° between the planar ring atoms and the flap] with the B atom out of the plane. In the 1-(2-pyridin­yl)-3-phenyl-5-hy­droxy­pyrazole group, the pyridinyl ring, the phenyl ring and the pyrazole ring are almost coplanar: the pyrazole ring makes a dihedral angle of 9.56 (8)° with the pyridinyl ring and 17.68 (7)° with the phenyl ring. The crystal structure is stabilized by π–π stacking inter­actions involving the pyridinyl and pyrazole rings of centrosymmetrically related mol­ecules, with ring centroid separations of 3.54 (5) Å

    Using Medical Error Cases for Patient Safety Education

    No full text

    The first record of leucism in the Rhabdophis tigrinus (Boie, 1826) (Squamata, Colubridae) in South Korea

    No full text
    Abstract Leucism, in which pigmentation is lost over part or the entire body of an animal, has a range of possible genetic causes. Here, we report leucism in an individual tiger keelback (Rhabdophis tigrinus) found on Jeung Island, Shinan‐gun, Jeollanam‐do, South Korea, during a survey of the distribution of reptiles in the area. The individual was observed sunbathing in the bushes next to a pond. This individual exhibited ecdysis, thus it considered that have normal feeding activity. Our report represents the first observation of leucism in R. tigrinus, and thus, further analysis is needed of this phenotype to more clearly understand its impact on the species and its natural history

    Walnut Prevents Cognitive Impairment by Regulating the Synaptic and Mitochondrial Dysfunction via JNK Signaling and Apoptosis Pathway in High-Fat Diet-Induced C57BL/6 Mice

    No full text
    This study was conducted to evaluate the protective effect of Juglans regia (walnut, Gimcheon 1ho cultivar, GC) on high-fat diet (HFD)-induced cognitive dysfunction in C57BL/6 mice. The main physiological compounds of GC were identified as pedunculagin/casuariin isomer, strictinin, tellimagrandin I, ellagic acid-O-pentoside, and ellagic acid were identified using UPLC Q-TOF/MS analysis. To evaluate the neuro-protective effect of GC, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 2′,7′-dichlorodihydrofluorecein diacetate (DCF-DA) analysis were conducted in H2O2 and high glucose-induced neuronal PC12 cells and hippocampal HT22 cells. GC presented significant cell viability and inhibition of reactive oxygen species (ROS) production. GC ameliorated behavioral and memory dysfunction through Y-maze, passive avoidance, and Morris water maze tests. In addition, GC reduced white adipose tissue (WAT), liver fat mass, and serum dyslipidemia. To assess the inhibitory effect of antioxidant system deficit, lipid peroxidation, ferric reducing antioxidant power (FRAP), and advanced glycation end products (AGEs) were conducted. Administration of GC protected the antioxidant damage against HFD-induced diabetic oxidative stress. To estimate the ameliorating effect of GC, acetylcholine (ACh) level, acetylcholinesterase (AChE) activity, and expression of AChE and choline acetyltransferase (ChAT) were conducted, and the supplements of GC suppressed the cholinergic system impairment. Furthermore, GC restored mitochondrial dysfunction by regulating the mitochondrial ROS production and mitochondrial membrane potential (MMP) levels in cerebral tissues. Finally, GC ameliorated cerebral damage by synergically regulating the protein expression of the JNK signaling and apoptosis pathway. These findings suggest that GC could provide a potential functional food source to improve diabetic cognitive deficits and neuronal impairments

    Leaves of Cedrela sinensis Attenuate Chronic Unpredictable Mild Stress-Induced Depression-like Behavior via Regulation of Hormonal and Inflammatory Imbalance

    No full text
    This study aimed to evaluate the protective effects of ethyl acetate fraction from Cedrela sinensis (EFCS) against chronic unpredictable mild stress (CUMS)-induced behavioral dysfunction and stress response in C57BL/6 mice. The physiological compounds of EFCS were identified as rutin, isoquercitrin, ethyl gallate, quercitrin, kaempferol-3-O-rhamnoside, and ethyl digallate, using UPLC-Q-TOF/MSE. To evaluate the neuroprotective effect of EFCS, H2O2− and corticosterone-induced neuronal cell viability was conducted in human neuroblastoma MC-IXC cells. It was found that EFCS alleviated depression-like behavior by conducting the sucrose preference test (SPT), forced swimming test (FST), open field test (OFT), and tail suspension test (TST). EFCS inhibited mitochondrial dysfunction related to neuronal energy metabolism by regulating reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), and ATP contents in brain tissue. In addition, the administration of EFCS regulated the stress hormones in serum. EFCS regulated stress-related indicators such as CRF, ACTH, CYP11B1, and BDNF. Moreover, EFCS downregulated the inflammatory responses and apoptosis proteins such as caspase-1, TNF-α, IL-1β, p-JNK, BAX, and p-tau in brain tissues. These results suggest that EFCS might be a potential natural plant material that alleviates CUMS-induced behavior disorder by regulating inflammation in brain tissue against CUMS-induced depression

    Anti-Amnesic Effect of Synbiotic Supplementation Containing <i>Corni fructus</i> and <i>Limosilactobacillus reuteri</i> in DSS-Induced Colitis Mice

    No full text
    This study was conducted to compare the synbiotic activity between Corni fructus (C. fructus) and Limosilactobacillus reuteri (L. reuteri) on dextran sulfate sodium (DSS)-induced colitis and cognitive dysfunction in C57BL/6 mice. C. fructus (as prebiotics, PRE), L. reuteri (as probiotics, PRO), and synbiotics (as a mixture of L. reuteri and C. fructus, SYN) were fed to mice for 3 weeks. Consumption of PRE, PRO, and SYN ameliorated colitis symptoms in body weight, large intestinal length, and serum albumin level. Moreover, SYN showed a synergistic effect on intestinal permeability and intestinal anti-inflammation response. Also, SYN significantly improved cognitive function as a result of measuring the Y-maze and passive avoidance tests in DSS-induced behavioral disorder mice. Especially, SYN also restored memory function by increasing the cholinergic system and reducing tau and amyloid β pathology. In addition, PRE, PRO, and SYN ameliorated dysbiosis by regulating the gut microbiota and the concentration of short-chain fatty acids (SCFAs) in feces. The bioactive compounds of C. fructus were identified with quinic acid, morroniside, loganin, and cornuside, using ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS2). In conclusion, synbiotic supplementation alleviated DSS-induced colitis and cognitive dysfunction by modulating gut microbiota, proinflammatory cytokines, and SCFAs production

    Porphyra tenera Protects against PM2.5-Induced Cognitive Dysfunction with the Regulation of Gut Function

    No full text
    To evaluate the biological effects of Porphyra tenera (P. tenera), we tried to confirm the possibility that the intake of P. tenera could modulate cognitive and intestinal functions in PM2.5-induced cognitive decline mice. P. tenera attenuated PM2.5-induced learning and memory impairment through antioxidant and anti-inflammatory effects by regulating the mitochondrial function and TLR-initiated NF-&kappa;B signaling. In addition, P. tenera effectively alleviated A&beta; production/tau phosphorylation by inhibiting the JNK phosphorylation. Also, the bioactive constituents of P. tenera determined the sulfated galactan, mycosporine-like amino acids (MAAs), and chlorophyll derivatives. Moreover, the bioactive compounds of P. tenera by gut fermentation protected against gut dysbiosis and intestinal tight junction damage with a decrease in inflammatory response and short-chain fatty acid production. Based on these results, our findings suggest that P. tenera with sulfated galactan and MAAs is a potential material for cognitive function improvement

    Powdered Green Tea (Matcha) Attenuates the Cognitive Dysfunction via the Regulation of Systemic Inflammation in Chronic PM2.5-Exposed BALB/c Mice

    No full text
    This study was conducted to evaluate the anti-amnesic effect of the aqueous extract of powdered green tea (matcha) (EM) in particulate matter (PM)2.5-induced systemic inflammation in BALB/c mice. EM ameliorated spatial learning and memory function, short-term memory function, and long-term learning and memory function in PM2.5-induced mice. EM protected against antioxidant deficit in pulmonary, dermal, and cerebral tissues. In addition, EM improved the cholinergic system through the regulation of acetylcholine (ACh) levels and acetylcholinesterase (AChE) activity in brain tissue, and it protected mitochondrial dysfunction by regulating the production of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and ATP contents in brain tissue. EM attenuated systemic inflammation and apoptotic signaling in pulmonary, dermal, olfactory bulb, and hippocampal tissues. Moreover, EM suppressed neuronal cytotoxicity and cholinergic dysfunction in hippocampal tissue. This study suggests that EM might be a potential substance to improve PM2.5-induced cognitive dysfunction via the regulation of systemic inflammation

    Transcriptome analysis of air-breathing land slug, Incilaria fruhstorferi reveals functional insights into growth, immunity, and reproduction

    No full text
    Abstract Background Incilaria (= Meghimatium) fruhstorferi is an air-breathing land slug found in restricted habitats of Japan, Taiwan and selected provinces of South Korea (Jeju, Chuncheon, Busan, and Deokjeokdo). The species is on a decline due to depletion of forest cover, predation by natural enemies, and collection. To facilitate the conservation of the species, it is important to decide on a number of traits related to growth, immunity and reproduction addressing fitness advantage of the species. Results The visceral mass transcriptome of I. fruhstorferi was enabled using the Illumina HiSeq 4000 sequencing platform. According to BUSCO (Benchmarking Universal Single-Copy Orthologs) method, the transcriptome was considered complete with 91.8% of ortholog genes present (Single: 70.7%; Duplicated: 21.1%). A total of 96.79% of the raw read sequences were processed as clean reads. TransDecoder identified 197,271 contigs that contained candidate-coding regions. Of a total of 50,230 unigenes, 34,470 (68.62% of the total unigenes) annotated to homologous proteins in the Protostome database (PANM-DB). The GO term and KEGG pathway analysis indicated genes involved in metabolism, phosphatidylinositol signalling system, aminobenzoate degradation, and T-cell receptor signalling pathway. Many genes associated with molluscan innate immunity were categorized under pathogen recognition receptor, TLR signalling pathway, MyD88 dependent pathway, endogenous ligands, immune effectors, antimicrobial peptides, apoptosis, and adaptation-related. The reproduction-associated unigenes showed homology to protein fem-1, spermatogenesis-associated protein, sperm associated antigen, and testis expressed sequences, among others. In addition, we identified key growth-related genes categorized under somatotrophic axis, muscle growth, chitinases and collagens. A total of 4822 Simple Sequence Repeats (SSRs) were also identified from the unigene sequences of I. fruhstorferi. Conclusions This is the first available genomic information for non-model land slug, I. fruhstorferi focusing on genes related to growth, immunity, and reproduction, with additional focus on microsatellites and repeating elements. The transcriptome provides access to greater number of traits of unknown relevance in the species that could be exploited for in-depth analyses of evolutionary plasticity and making informed choices during conservation planning. This would be appropriate for understanding the dynamics of the species on a priority basis considering the ecological, health, and social benefits
    corecore