16 research outputs found

    Relationship between the expansion of drylands and the intensification of Hadley circulation during the late twentieth century

    Get PDF
    The changes in coverage by arid climate and intensity of the Hadley circulation during the second half of the twentieth century were examined using observations and the multi-model ensemble (MME) mean of Twentieth-Century Coupled Climate Model (20C3M) simulations. It was found that the area of dry climate, which comprises steppe and desert climates following the Köppen climate classification, expanded to an appreciable extent in observation and, to a lesser degree, in MME simulation. The areal extent of steppe climate (the outer boundary of arid climate) tends to encroach on the surrounding climate groups, which, in turn, feeds desert climate (the inner part of arid climate) and causes it to grow. This result indicates the importance of accurate prediction for climate regimes that border steppe climate. Concomitant with the expansion of drylands, the observed intensity of the Hadley cell is persistently enhanced, particularly during boreal winter, suggesting the validity of a self-induction of deserts through a positive biogeophysical feedback (also known as Charney’s cycle). In comparison, the simulated Hadley circulation in the MME mean remains invariant in time. The current climate models, therefore, disagree with the observation in the long-term linkage between desertification and Hadley cell. Finally, the implication of such discrepancy is discussed as a possible guidance to improve models

    A Non-Unity Torque Sharing Function for Torque Ripple Minimization of Switched Reluctance Generators in Wind Power Systems

    No full text
    This paper deals with a new torque ripple minimization method for a Switched Reluctance Generator (SRG). Although, the SRG has many advantages including simple and robust construction, and high power density as a generator, it has not been widely employed in the industry. One of the major drawbacks of the SRG is its high torque ripple that results in high noise operation of the generator. In this paper, a non-unity Torque Sharing Function (TSF) is proposed to minimize the torque ripple over a wide speed range of operation. Simulations as well as experimental results are presented to verify the effectiveness of the proposed torque ripple minimization technique

    DC-Link Capacitor-Current Ripple Reduction in DPWM-Based Back-to-Back Converters

    No full text

    Open Fault Detection and Tolerant Control for a Five Phase Inverter Driving System

    No full text
    This paper proposes a fault detection and the improved fault-tolerant control for an open fault in the five-phase inverter driving system. The five-phase induction machine has a merit of fault-tolerant control due to its increased number of phases. This paper analyzes an open fault pattern of one switch and proposes an effective fault detection method based upon this analysis. The proposed fault detection method using the analyzed patterns is applied in the power inverter. In addition, when the open fault occurs in the one switch of the induction machine driving system, the proposed fault-tolerant control method is used to operate the induction machine using the remaining healthy phases, after performing the fault detection method. Simulation and experiment results are provided to validate the proposed technique

    Ethanol Extract of Evodia rutaecarpa Attenuates Cell Growth through Caspase-Dependent Apoptosis in Benign Prostatic Hyperplasia-1 Cells

    No full text
    The dried fruits of Evodia rutaecarpa Bentham have been used widely as a herbal medicine for the treatment of inflammatory disorders and abdominal pain. Benign prostatic hyperplasia (BPH) is a nonmalignant disease characterized by overgrowth of prostates. Despite the pharmacological efficacy of the fruits of E. rutaecarpa against various diseases, their effects against BPH have not been reported. Here, we investigated the inhibitory activity of a 70% ethanol extract of E. rutaecarpa (EEER) against BPH, and its underlying mechanisms regarding cell growth of BPH using BPH-1 cells. An in vitro 5α-reductase activity assay showed that EEER exhibited inhibitory activity against 5α-reductase. In BPH-1 cells, EEER treatment inhibited cell viability and reduced the expression of the proliferating cell nuclear antigen proliferating cell nuclear antigen (PCNA), cyclin D1, and phosphor-ERK1/2 proteins. Moreover, EEER also induced apoptosis, with chromatin condensation, apoptotic bodies, and internucleosomal DNA fragmentation. Regarding its underlying mechanisms, EEER exacerbated the activation of caspase-8 and caspase-3 in a concentration-dependent manner and eventually caused the cleavage of PARP. Taken together, these data demonstrated that EEER had a potent 5α-reductase inhibitory activity and that EEER treatment in BPH-1 cells inhibited cell viability via caspase-8- and caspase-3-dependent apoptosis. Therefore, EEER may be a potential phytotherapeutic agent for the treatment of BPH

    Thermal Design of Blackbody for On-Board Calibration of Spaceborne Infrared Imaging Sensor

    No full text
    In this study, we propose a thermal design for an on-board blackbody (BB) for spaceborne infrared (IR) sensor calibration. The main function of the on-board BB is to provide highly uniform and precise radiation temperature reference sources from 0 °C to 40 °C during the calibration of the IR sensor. To meet the functional requirements of BB, a BB thermal design using a heater to heat the BB during sensor calibration and heat pipes to transfer residual heat to the radiator after calibration is proposed and investigated both numerically and experimentally. The main features of the proposed thermal design are a symmetric temperature gradient on the BB surface with less than 1 K temperature uniformity, ease of temperature sensor implementation to estimate the representative surface temperature of the BB, a stable thermal interface between the heat pipes and BB, and a fail-safe function under one heat pipe failure. The thermal control performance of the BB is investigated via in-orbit thermal analysis, and its effectiveness is verified via a heat-up test of the BB under ambient conditions. These results indicate that the temperature gradient on the BB surface was obtained at less than 1 K, and the representative surface temperature could be estimated with an accuracy of 0.005 °C via the temperature sensor

    Thermal Design of Blackbody for On-Board Calibration of Spaceborne Infrared Imaging Sensor

    No full text
    In this study, we propose a thermal design for an on-board blackbody (BB) for spaceborne infrared (IR) sensor calibration. The main function of the on-board BB is to provide highly uniform and precise radiation temperature reference sources from 0 °C to 40 °C during the calibration of the IR sensor. To meet the functional requirements of BB, a BB thermal design using a heater to heat the BB during sensor calibration and heat pipes to transfer residual heat to the radiator after calibration is proposed and investigated both numerically and experimentally. The main features of the proposed thermal design are a symmetric temperature gradient on the BB surface with less than 1 K temperature uniformity, ease of temperature sensor implementation to estimate the representative surface temperature of the BB, a stable thermal interface between the heat pipes and BB, and a fail-safe function under one heat pipe failure. The thermal control performance of the BB is investigated via in-orbit thermal analysis, and its effectiveness is verified via a heat-up test of the BB under ambient conditions. These results indicate that the temperature gradient on the BB surface was obtained at less than 1 K, and the representative surface temperature could be estimated with an accuracy of 0.005 °C via the temperature sensor
    corecore