25,216 research outputs found
Minimax estimation with thresholding and its application to wavelet analysis
Many statistical practices involve choosing between a full model and reduced
models where some coefficients are reduced to zero. Data were used to select a
model with estimated coefficients. Is it possible to do so and still come up
with an estimator always better than the traditional estimator based on the
full model? The James-Stein estimator is such an estimator, having a property
called minimaxity. However, the estimator considers only one reduced model,
namely the origin. Hence it reduces no coefficient estimator to zero or every
coefficient estimator to zero. In many applications including wavelet analysis,
what should be more desirable is to reduce to zero only the estimators smaller
than a threshold, called thresholding in this paper. Is it possible to
construct this kind of estimators which are minimax? In this paper, we
construct such minimax estimators which perform thresholding. We apply our
recommended estimator to the wavelet analysis and show that it performs the
best among the well-known estimators aiming simultaneously at estimation and
model selection. Some of our estimators are also shown to be asymptotically
optimal.Comment: Published at http://dx.doi.org/10.1214/009053604000000977 in the
Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Modulation Doping of a Mott Quantum Well by a Proximate Polar Discontinuity
We present evidence for hole injection into LaAlO3/LaVO3/LaAlO3 quantum wells
near a polar surface of LaAlO3 (001). As the surface is brought in proximity to
the LaVO3 layer, an exponential drop in resistance and a decreasing positive
Seebeck coefficient is observed below a characteristic coupling length of 10-15
unit cells. We attribute this behavior to a crossover from an atomic
reconstruction of the AlO2-terminated LaAlO3 surface to an electronic
reconstruction of the vanadium valence. These results suggest a general
approach to tunable hole-doping in oxide thin film heterostructures.Comment: 16 pages, 7 figure
Metallic behavior in Si/SiGe 2D electron systems
We calculate the temperature, density, and parallel magnetic field dependence
of low temperature electronic resistivity in 2D high-mobility Si/SiGe quantum
structures, assuming the conductivity limiting mechanism to be carrier
scattering by screened random charged Coulombic impurity centers. We obtain
comprehensive agreement with existing experimental transport data, compellingly
establishing that the observed 2D metallic behavior in low-density Si/SiGe
systems arises from the peculiar nature of 2D screening of long-range impurity
disorder. In particular, our theory correctly predicts the experimentally
observed metallic temperature dependence of 2D resistivity in the fully
spin-polarized system
Electronic charges and electric potential at LaAlO3/SrTiO3 interfaces studied by core-level photoemission spectroscopy
We studied LaAlO3/SrTiO3 interfaces for varying LaAlO3 thickness by
core-level photoemission spectroscopy. In Ti 2p spectra for conducting "n-type"
interfaces, Ti3+ signals appeared, which were absent for insulating "p-type"
interfaces. The Ti3+ signals increased with LaAlO3 thickness, but started well
below the critical thickness of 4 unit cells for metallic transport. Core-level
shifts with LaAlO3 thickness were much smaller than predicted by the polar
catastrophe model. We attribute these observations to surface
defects/adsorbates providing charges to the interface even below the critical
thickness
Far-infrared spectroscopy of spin excitations and Dzyaloshinskii-Moriya interactions in a Shastry-Sutherland compound SrCu(BO)$_2
We have studied spin excitation spectra in the Shastry-Sutherland model
compound SrCu(BO) in magnetic fields using far-infrared Fourier
spectroscopy. The transitions from the ground singlet state to the triplet
state at 24 cm and to several bound triplet states are induced by the
electric field component of the far-infrared light. To explain the light
absorption in the spin system we invoke a dynamic Dzyaloshinskii-Moriya (DM)
mechanism where light couples to a phonon mode, allowing the DM interaction.
Two optical phonons couple light to the singlet to triplet transition in
SrCu(BO). One is -polarized and creates an intra-dimer dynamic
DM along the c axis. The other is -polarized and creates an intra-dimer
dynamic DM interaction, it is in the plane and perpendicular to the
dimer axis. Singlet levels at 21.5 and 28.6 cm anti-cross with the first
triplet as is seen in far-infrared spectra. We used a cluster of two dimers
with a periodic boundary condition to perform a model calculation with scaled
intra- and inter-dimer exchange interactions. Two static DM interactions are
sufficient to describe the observed triplet state spectra. The static
inter-dimer DM in the c-direction cm splits the triplet state
sub-levels in zero field [C\'{e}pas et al., Phys. Rev. Lett. \textbf{87},
167205 (2001)]. The static intra-dimer DM in the plane (perpendicular to
the dimer axis) cm, allowed by the buckling of CuBO
planes, couples the triplet state to the 28.6 cm singlet as is seen from
the avoided crossing.Comment: 12 pages with 7 figures, some references correcte
Recommended from our members
AKARI observation of early-type galaxies in Abell 2218
We describe the AKARI InfraRed Camera (IRC) imaging observation of early-type galaxies (ETGs) in A2218 at z ≅ 0.175. With the imaging capability at 11 and 15 μm, we investigate mid-infrared (MIR) properties of ETGs in the cluster environment. Among our flux-limited sample of 22 optical red sequence ETGs, we find that more than 50% have MIR-excess emission, and the most likely cause of the MIR excess is the circumstellar dust emission from asymptotic giant branch (AGB) stars. The MIR-excess galaxies reveal a wide spread in N3-S11 (3 and 11 μm) colors, indicative of a significant spread (2–11 Gyr) in the mean ages of stellar populations. They are also preferentially located in the outer region, suggesting the environment dependence of MIR-excess ETGs over an area out to a half virial radius
Negative Differential Resistance Induced by Mn Substitution at SrRuO3/Nb:SrTiO3 Schottky Interfaces
We observed a strong modulation in the current-voltage characteristics of
SrRuO/Nb:SrTiO Schottky junctions by Mn substitution in SrRuO,
which induces a metal-insulator transition in bulk. The temperature dependence
of the junction ideality factor indicates an increased spatial inhomogeneity of
the interface potential with substitution. Furthermore, negative differential
resistance was observed at low temperatures, indicating the formation of a
resonant state by Mn substitution. By spatially varying the position of the Mn
dopants across the interface with single unit cell control, we can isolate the
origin of this resonant state to the interface SrRuO layer. These results
demonstrate a conceptually different approach to controlling interface states
by utilizing the highly sensitive response of conducting perovskites to
impurities
Relativistic Hydrodynamic Cosmological Perturbations
Relativistic cosmological perturbation analyses can be made based on several
different fundamental gauge conditions. In the pressureless limit the variables
in certain gauge conditions show the correct Newtonian behaviors. Considering
the general curvature () and the cosmological constant () in the
background medium, the perturbed density in the comoving gauge, and the
perturbed velocity and the perturbed potential in the zero-shear gauge show the
same behavior as the Newtonian ones in general scales. In the first part, we
elaborate these Newtonian correspondences. In the second part, using the
identified gauge-invariant variables with correct Newtonian correspondences, we
present the relativistic results with general pressures in the background and
perturbation. We present the general super-sound-horizon scale solutions of the
above mentioned variables valid for general , , and generally
evolving equation of state. We show that, for vanishing , the
super-sound-horizon scale evolution is characterised by a conserved variable
which is the perturbed three-space curvature in the comoving gauge. We also
present equations for the multi-component hydrodynamic situation and for the
rotation and gravitational wave.Comment: 16 pages, no figure, To appear in Gen. Rel. Gra
- …