495 research outputs found
Correlated Hybrid Fluctuations from Inflation with Thermal Dissipation
We investigate the primordial scalar perturbations in the thermal dissipative
inflation where the radiation component (thermal bath) persists and the density
fluctuations are thermally originated. The perturbation generated in this model
is hybrid, i.e. it consists of both adiabatic and isocurvature components. We
calculate the fractional power ratio () and the correlation coefficient
() between the adiabatic and the isocurvature perturbations at the
commencing of the radiation regime. Since the adiabatic/isocurvature
decomposition of hybrid perturbations generally is gauge-dependent at
super-horizon scales when there is substantial energy exchange between the
inflaton and the thermal bath, we carefully perform a proper decomposition of
the perturbations. We find that the adiabatic and the isocurvature
perturbations are correlated, even though the fluctuations of the radiation
component is considered uncorrelated with that of the inflaton. We also show
that both and depend mainly on the ratio between the
dissipation coefficient and the Hubble parameter during inflation.
The correlation is positive () for strong dissipation cases
where , and is negative for weak dissipation instances where
. Moreover, and in this model are not
independent of each other. The predicted relation between and
is consistent with the WMAP observation. Other testable predictions are also
discussed.Comment: 18 pages using revtex4, accepted for publication in PR
Hadronic Parity Violation and Inelastic Electron-Deuteron Scattering
We compute contributions to the parity-violating (PV) inelastic
electron-deuteron scattering asymmetry arising from hadronic PV. While hadronic
PV effects can be relatively important in PV threshold electro- disintegration,
we find that they are highly suppressed at quasielastic kinematics. The
interpretation of the PV quasielastic asymmetry is, thus, largely unaffected by
hadronic PV.Comment: 27 pages, 13 figures, uses REVTeX and BibTe
BRST-anti-BRST covariant theory for the second class constrained systems. A general method and examples
The BRST-anti-BRST covariant extension is suggested for the split involution
quantization scheme for the second class constrained theories. The constraint
algebra generating equations involve on equal footing a pair of BRST charges
for second class constraints and a pair of the respective anti-BRST charges.
Formalism displays explicit Sp(2) \times Sp(2) symmetry property. Surprisingly,
the the BRST-anti-BRST algebra must involve a central element, related to the
nonvanishing part of the constraint commutator and having no direct analogue in
a first class theory. The unitarizing Hamiltonian is fixed by the requirement
of the explicit BRST-anti-BRST symmetry with a much more restricted ambiguity
if compare to a first class theory or split involution second class case in the
nonsymmetric formulation. The general method construction is supplemented by
the explicit derivation of the extended BRST symmetry generators for several
examples of the second class theories, including self--dual nonabelian model
and massive Yang Mills theory.Comment: 19 pages, LaTeX, 2 examples adde
Hamiltonian BFV-BRST theory of closed quantum cosmological models
We introduce and study a new discrete basis of gravity constraints by making
use of harmonic expansion for closed cosmological models. The full set of
constraints is splitted into area-preserving spatial diffeomorphisms, forming
closed subalgebra, and Virasoro-like generators. Operatorial Hamiltonian
BFV-BRST quantization is performed in the framework of perturbative expansion
in the dimensionless parameter which is a positive power of the ratio of
Planckian volume to the volume of the Universe. For the (N+1) - dimensional
generalization of stationary closed Bianchi-I cosmology the nilpotency
condition for the BRST operator is examined in the first quantum approximation.
It turns out, that certain relationship between dimensionality of the space and
the spectrum of matter fields emerges from the requirement of quantum
consistency of the model.Comment: 28 pages, LaTe
Crystal structure and two-stage hydrolysis of dimethoxo(meso-tetra(4-methoxyphenylporphyrinato))tin(IV), Sn(tmpp)(OMe)(2)
In this work, we determine the crystal structure of dimethoxo(meso-tetra(4-methoxyphenylporphyrinato))tin(IV), Sn(tmpp)(OMe)(2) (1). Experimental results indicate that the tin atom has an octahedral geometry. The geometry around the tin center has Sn(1)-O(5) = 2.020(6), Sn(1)-O(6) = 2.003(7) Angstrom and an average Sn(1)-N = 2.10(1) Angstrom. The two methoxo groups are unidentately coordinated to the tin(IV) atom. Two-stage hydrolysis of Sn(tmpp)(OMe)(2) in CDCl3 was observed by H-1 and C-13 NMR spectroscopy. Compound (1) crystallizes in the space group P2(1)/n with a = 14.7492(1), b = 19.2022(3), c = 16.0806(2) Angstrom, beta = 94.104(1)degrees and Z = 4
The 3D Structure of N132D in the LMC: A Late-Stage Young Supernova Remnant
We have used the Wide Field Spectrograph (WiFeS) on the 2.3m telescope at
Siding Spring Observatory to map the [O III] 5007{\AA} dynamics of the young
oxygen-rich supernova remnant N132D in the Large Magellanic Cloud. From the
resultant data cube, we have been able to reconstruct the full 3D structure of
the system of [O III] filaments. The majority of the ejecta form a ring of
~12pc in diameter inclined at an angle of 25 degrees to the line of sight. We
conclude that SNR N132D is approaching the end of the reverse shock phase
before entering the fully thermalized Sedov phase of evolution. We speculate
that the ring of oxygen-rich material comes from ejecta in the equatorial plane
of a bipolar explosion, and that the overall shape of the SNR is strongly
influenced by the pre-supernova mass loss from the progenitor star. We find
tantalizing evidence of a polar jet associated with a very fast oxygen-rich
knot, and clear evidence that the central star has interacted with one or more
dense clouds in the surrounding ISM.Comment: Accepted for Publication in Astrophysics & Space Science, 18pp, 8
figure
Density perturbations in generalized Einstein scenarios and constraints on nonminimal couplings from the Cosmic Microwave Background
We study cosmological perturbations in generalized Einstein scenarios and
show the equivalence of inflationary observables both in the Jordan frame and
the Einstein frame. In particular the consistency relation relating the
tensor-to-scalar ratio with the spectral index of tensor perturbations
coincides with the one in Einstein gravity, which leads to the same likelihood
results in terms of inflationary observables. We apply this formalism to
nonminimally coupled chaotic inflationary scenarios with potential
and place constraints on the strength of nonminimal couplings using a
compilation of latest observational data. In the case of the quadratic
potential (), the nonminimal coupling is constrained to be for negative from the observational contour
bound. Although the quartic potential () is under a strong observational
pressure for , this property is relaxed by taking into account negative
nonminimal couplings. We find that inflationary observables are within the
contour bound as long as . We also show that
the cases are disfavoured even in the presence of nonminimal
couplings.Comment: 16 pages, 4 eps figure
Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays
Average charged multiplicities have been measured separately in , and
light quark () events from decays measured in the SLD experiment.
Impact parameters of charged tracks were used to select enriched samples of
and light quark events, and reconstructed charmed mesons were used to select
quark events. We measured the charged multiplicities:
,
, from
which we derived the differences between the total average charged
multiplicities of or quark events and light quark events: and . We compared
these measurements with those at lower center-of-mass energies and with
perturbative QCD predictions. These combined results are in agreement with the
QCD expectations and disfavor the hypothesis of flavor-independent
fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters
Raditive decay of single charmed baryons
The electromagnetic transitions between () and
() baryons are important decay modes to observe new hadronic
states experimentally. For the estimation of these transitions widths, we
employ a non-relativistic quark potential model description with color coulomb
plus linear confinement potential. Such a description has been employed to
compute the ground state masses and magnetic moments of the single heavy flavor
baryons. The magnetic moments of the baryons are obtained using the spin-flavor
structure of the constituting quark composition of the baryon. Here, we also
define an effective constituent mass of the quarks (ecqm) by taking into
account the binding effects of the quarks within the baryon. The radiative
transition widths are computed in terms of the magnetic moments of the baryon
and the photon energy. Our results are compared with other theoretical models.Comment: 06 Pages, Presented at XVIII DAE-BRNS symposium on High energy
Physics, Banaras Hindu University, Varansi, INDI
Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at TeV
The elliptic, , triangular, , and quadrangular, , azimuthal
anisotropic flow coefficients are measured for unidentified charged particles,
pions and (anti-)protons in Pb-Pb collisions at TeV
with the ALICE detector at the Large Hadron Collider. Results obtained with the
event plane and four-particle cumulant methods are reported for the
pseudo-rapidity range at different collision centralities and as a
function of transverse momentum, , out to GeV/.
The observed non-zero elliptic and triangular flow depends only weakly on
transverse momentum for GeV/. The small dependence
of the difference between elliptic flow results obtained from the event plane
and four-particle cumulant methods suggests a common origin of flow
fluctuations up to GeV/. The magnitude of the (anti-)proton
elliptic and triangular flow is larger than that of pions out to at least
GeV/ indicating that the particle type dependence persists out
to high .Comment: 16 pages, 5 captioned figures, authors from page 11, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186
- …