20,325 research outputs found

    Effect of the length of inflation on angular TT and TE power spectra in power-law inflation

    Full text link
    The effect of the length of inflation on the power spectra of scalar and tensor perturbations is estimated using the power-law inflation model with a scale factor of a(t) = t^q. Considering various pre-inflation models with radiation-dominated or scalar matter-dominated periods before inflation in combination with two matching conditions, the temperature angular power spectrum (TT) and temperature-polarization cross-power spectrum (TE) are calculated and a likelihood analysis is performed. It is shown that the discrepancies between the Wilkinson Microwave Anisotropy Probe (WMAP) data and the LCDM model, such as suppression of the spectrum at l = 2,3 and oscillatory behavior, may be explained by the finite length of inflation model if the length of inflation is near 60 e-folds and q > 300. The proposed models retain similar values of chi^2 to that achieved by the LCDM model with respect to fit to the WMAP data, but display different characteristics of the angular TE power spectra at l < 20.Comment: 41 pages, 11 figure

    Lines on projective varieties and applications

    Full text link
    The first part of this note contains a review of basic properties of the variety of lines contained in an embedded projective variety and passing through a general point. In particular we provide a detailed proof that for varieties defined by quadratic equations the base locus of the projective second fundamental form at a general point coincides, as a scheme, with the variety of lines. The second part concerns the problem of extending embedded projective manifolds, using the geometry of the variety of lines. Some applications to the case of homogeneous manifolds are included.Comment: 15 pages. One example removed; one remark and some references added; typos correcte

    Non-abelian dynamics in first-order cosmological phase transitions

    Full text link
    Bubble collisions in cosmological phase transitions are explored, taking the non-abelian character of the gauge fields into account. Both the QCD and electroweak phase transitions are considered. Numerical solutions of the field equations in several limits are presented.Comment: 8 pages, 2 figures. Contribution to the CosPA 2003 Cosmology and Particle Astrophysics Symposium. Typos correcte

    Cosmological Gravitational Wave in a Gravity with Quadratic Order Curvature Couplings

    Get PDF
    We present a set of equations describing the cosmological gravitational wave in a gravity theory with quadratic order gravitational coupling terms which naturally arise in quantum correction procedures. It is known that the gravitational wave equation in the gravity theories with a general f(R)f(R) term in the action leads to a second order differential equation with the only correction factor appearing in the damping term. The case for a RabRabR^{ab} R_{ab} term is completely different. The gravitational wave is described by a fourth order differential equation both in time and space. However, curiously, we find that the contributions to the background evolution are qualitatively the same for both terms.Comment: 4 pages, revtex, no figure

    2D Metal-Insulator transition as a percolation transition

    Full text link
    By carefully analyzing the low temperature density dependence of 2D conductivity in undoped high mobility n-GaAs heterostructures, we conclude that the 2D metal-insulator transition in this system is a density inhomogeneity driven percolation transition due to the breakdown of screening in the random charged impurity disorder background. In particular, our measured conductivity exponent of ∼1.4\sim 1.4 approaches the 2D percolation exponent value of 4/3 at low temperatures and our experimental data are inconsistent with there being a zero-temperature quantum critical point in our system.Comment: 5 pages, 3 figure

    Does Good Mutation Help You Live Longer?

    Full text link
    We study the dynamics of an age-structured population in which the life expectancy of an offspring may be mutated with respect to that of its parent. When advantageous mutation is favored, the average fitness of the population grows linearly with time tt, while in the opposite case the average fitness is constant. For no mutational bias, the average fitness grows as t^{2/3}. The average age of the population remains finite in all cases and paradoxically is a decreasing function of the overall population fitness.Comment: 4 pages, 2 figures, RevTeX revised version, to appear in Phys. Rev. Let
    • …
    corecore