320 research outputs found

    PCR Targeting Plasmodium Mitochondrial Genome of DNA Extracted from Dried Blood on Filter Paper Compared to Whole Blood.

    Get PDF
    Monitoring mortality and morbidity attributable to malaria is paramount to achieve elimination of malaria. Diagnosis of malaria is challenging and PCR is a reliable method for identifying malaria with high sensitivity. However, blood specimen collection and transport can be challenging and obtaining dried blood spots (DBS) on filter paper by finger-prick may have advantages over collecting whole blood by venepuncture. DBS and whole blood were collected from febrile children admitted at the general paediatric wards at a referral hospital in Dar es Salaam, Tanzania. DNA extracted from whole blood and from DBS was tested with a genus-specific PCR targeting the mitochondrial Plasmodium genome. Positive samples by PCR of DNA from whole blood were tested with species-specific PCR targeting the 18S rRNA locus, or sequencing if species-specific PCR was negative. Rapid diagnostic test (RDT) and thin blood smear microscopy was carried out on all patients where remnant whole blood and a blood slide, respectively, were available. Positivity of PCR was 24.5 (78/319) and 11.2% (52/442) by whole blood and DBS, respectively. All samples positive on DBS were also positive on Plasmodium falciparum species-specific PCR. All RDT positive cases were also positive by DBS PCR. All but three cases with positive blood slides were also positive by DBS. In this study, PCR for malaria mitochondrial DNA extracted from whole blood was more sensitive than from DBS. However, DBS are a practical alternative to whole blood and detected approximately the same number of cases as RDTs and, therefore, remain relevant for research purposes

    Lifestyle and geographic insights into the distinct gut microbiota in elderly women from two different geographic locations

    Get PDF
    BACKGROUND: A large number of microorganisms reside within the gastrointestinal tract, especially in the colon, and play important roles in human health and disease. The composition of the human gut microbiota is determined by intrinsic host factors and environmental factors. While investigating environmental factors to promote human health is of great interest, few studies have focused on their effect on the gut microbiota. This study aimed to investigate differences in gut microbiota composition according to lifestyle and geographical area, even in people with similar genetic background. METHODS: We enrolled ten and nine elderly women in their seventies from island and inland areas, respectively. Fecal samples were obtained from individuals, and bacterial 16S ribosomal RNA genes were analyzed by next-generation sequencing to define the gut microbiota composition. We assessed their diet, which can influence the gut microbial community. We also conducted physical examination and determined the physical activity levels of the subjects. RESULTS: The inland subjects had a significantly higher rectal temperature, systolic blood pressure, and heart rate and a significantly lower physical activity score than the island subjects. Fecal samples from the island group showed a tendency to have greater microbial diversity than those from the inland group. Interestingly, the microbial community composition differed significantly between the two groups. Catenibacterium was enriched in subjects from the island area. Catenibacterium showed a negative correlation with rectal temperature and a positive correlation with the dietary level of animal fat. In contrast, Butyricimonas was enriched in the inland subjects. A positive correlation was found between Butyricimonas and mean arterial pressure. CONCLUSIONS: This study identified differences in the gut microbiota composition between elderly women from different parts of South Korea, and our findings suggest that further studies of the human gut microbiota should evaluate aspects of the living environment

    Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface

    Full text link
    LaAlO3 and SrTiO3 are insulating, nonmagnetic oxides, yet the interface between them exhibits a two-dimensional electron system with high electron mobility,1 superconductivity at low temperatures,2-6 and electric-field-tuned metal-insulator and superconductorinsulator phase transitions.3,6-8 Bulk magnetization and magnetoresistance measurements also suggest some form of magnetism depending on preparation conditions5,9-11 and suggest a tendency towards nanoscale electronic phase separation.10 Here we use local imaging of the magnetization and magnetic susceptibility to directly observe a landscape of ferromagnetism, paramagnetism, and superconductivity. We find submicron patches of ferromagnetism in a uniform background of paramagnetism, with a nonuniform, weak diamagnetic superconducting susceptibility at low temperature. These results demonstrate the existence of nanoscale phase separation as suggested by theoretical predictions based on nearly degenerate interface sub-bands associated with the Ti orbitals.12,13 The magnitude and temperature dependence of the paramagnetic response suggests that the vast majority of the electrons at the interface are localized, and do not contribute to transport measurements.3,6,7 In addition to the implications for magnetism, the existence of a 2D superconductor at an interface with highly broken inversion symmetry and a ferromagnetic landscape in the background suggests the potential for exotic superconducting phenomena.Comment: Edited version to appear in Nature Physic

    Nuclear Receptor HNF4α Binding Sequences are Widespread in Alu Repeats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alu repeats, which account for ~10% of the human genome, were originally considered to be junk DNA. Recent studies, however, suggest that they may contain transcription factor binding sites and hence possibly play a role in regulating gene expression.</p> <p>Results</p> <p>Here, we show that binding sites for a highly conserved member of the nuclear receptor superfamily of ligand-dependent transcription factors, hepatocyte nuclear factor 4alpha (HNF4α, NR2A1), are highly prevalent in Alu repeats. We employ high throughput protein binding microarrays (PBMs) to show that HNF4α binds > 66 unique sequences in Alu repeats that are present in ~1.2 million locations in the human genome. We use chromatin immunoprecipitation (ChIP) to demonstrate that HNF4α binds Alu elements in the promoters of target genes (<it>ABCC3, APOA4, APOM, ATPIF1, CANX, FEMT1A, GSTM4, IL32, IP6K2, PRLR, PRODH2, SOCS2, TTR</it>) and luciferase assays to show that at least some of those Alu elements can modulate HNF4α-mediated transactivation <it>in vivo </it>(<it>APOM, PRODH2, TTR, APOA4</it>). HNF4α-Alu elements are enriched in promoters of genes involved in RNA processing and a sizeable fraction are in regions of accessible chromatin. Comparative genomics analysis suggests that there may have been a gain in HNF4α binding sites in Alu elements during evolution and that non Alu repeats, such as Tiggers, also contain HNF4α sites.</p> <p>Conclusions</p> <p>Our findings suggest that HNF4α, in addition to regulating gene expression via high affinity binding sites, may also modulate transcription via low affinity sites in Alu repeats.</p

    Knowledge of Malaria and Its Association with Malaria-Related Behaviors—Results from the Malaria Indicator Survey, Ethiopia, 2007

    Get PDF
    Background: In 2005, the Ministry of Health in Ethiopia launched a major effort to distribute over 20 million long-lasting insecticidal nets, provide universal access to artemisinin-based combination therapy (ACTs), and train 30,000 village-based health extension workers.\ud \ud Methods and Findings: A cross-sectional, nationally representative Malaria Indicator Survey was conducted during the malaria transmission season in 2007. Multivariate logistic regression analyses were performed to assess the effect of women's malaria knowledge on household ITN ownership and women's ITN use. In addition, we investigated the effect of mothers' malaria knowledge on their children under 5 years of age's (U5) ITN use and their access to fever treatment on behalf of their child U5. Malaria knowledge was based on a composite index about the causes, symptoms, danger signs and prevention of malaria. Approximately 67% of women (n = 5,949) and mothers of children U5 (n = 3,447) reported some knowledge of malaria. Women's knowledge of malaria was significantly associated with household ITN ownership (adjusted Odds Ratio [aOR] = 2.1; 95% confidence interval [CI] 1.6–2.7) and with increased ITN use for themselves (aOR = 1.8; 95% CI 1.3–2.5). Knowledge of malaria amongst mothers of children U5 was associated with ITN use for their children U5 (aOR = 1.6; 95% CI 1.1–2.4), but not significantly associated with their children U5 seeking care for a fever. School attendance was a significant factor in women's ITN use (aOR = 2.0; 95% CI 1.1–3.9), their children U5′s ITN use (aOR = 4.4; 95% CI 1.6–12.1), and their children U5 having sought treatment for a fever (aOR = 6.5; 95% CI 1.9–22.9).\ud \ud Conclusions: Along with mass free distribution of ITNs and universal access to ACTs, delivery of targeted malaria educational information to women could improve ITN ownership and use. Efforts to control malaria could be influenced by progress towards broader goals of improving access to education, especially for women

    Tolfenamic Acid Induces Apoptosis and Growth Inhibition in Head and Neck Cancer: Involvement of NAG-1 Expression

    Get PDF
    Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) is induced by nonsteroidal anti-inflammatory drugs and possesses proapoptotic and antitumorigenic activities. Although tolfenamic acid (TA) induces apoptosis in head and neck cancer cells, the relationship between NAG-1 and TA has not been determined. This study investigated the induction of apoptosis in head and neck cancer cells treated by TA and the role of NAG-1 expression in this induction. TA reduced head and neck cancer cell viability in a dose-dependent manner and induced apoptosis. The induced apoptosis was coincident with the expression of NAG-1. Overexpression of NAG-1 enhanced the apoptotic effect of TA, whereas suppression of NAG-1 expression by small interfering RNA attenuated TA-induced apoptosis. TA significantly inhibited tumor formation as assessed by xenograft models, and this result accompanied the induction of apoptotic cells and NAG-1 expression in tumor tissue samples. Taken together, these results demonstrate that TA induces apoptosis via NAG-1 expression in head and neck squamous cell carcinoma, providing an additional mechanistic explanation for the apoptotic activity of TA

    Crystal Structures of Two Aminoglycoside Kinases Bound with a Eukaryotic Protein Kinase Inhibitor

    Get PDF
    Antibiotic resistance is recognized as a growing healthcare problem. To address this issue, one strategy is to thwart the causal mechanism using an adjuvant in partner with the antibiotic. Aminoglycosides are a class of clinically important antibiotics used for the treatment of serious infections. Their usefulness has been compromised predominantly due to drug inactivation by aminoglycoside-modifying enzymes, such as aminoglycoside phosphotransferases or kinases. These kinases are structurally homologous to eukaryotic Ser/Thr and Tyr protein kinases and it has been shown that some can be inhibited by select protein kinase inhibitors. The aminoglycoside kinase, APH(3′)-IIIa, can be inhibited by CKI-7, an ATP-competitive inhibitor for the casein kinase 1. We have determined that CKI-7 is also a moderate inhibitor for the atypical APH(9)-Ia. Here we present the crystal structures of CKI-7-bound APH(3′)-IIIa and APH(9)-Ia, the first structures of a eukaryotic protein kinase inhibitor in complex with bacterial kinases. CKI-7 binds to the nucleotide-binding pocket of the enzymes and its binding alters the conformation of the nucleotide-binding loop, the segment homologous to the glycine-rich loop in eurkaryotic protein kinases. Comparison of these structures with the CKI-7-bound casein kinase 1 reveals features in the binding pockets that are distinct in the bacterial kinases and could be exploited for the design of a bacterial kinase specific inhibitor. Our results provide evidence that an inhibitor for a subset of APHs can be developed in order to curtail resistance to aminoglycosides

    The wonders of flap endonucleases: structure, function, mechanism and regulation.

    Get PDF
    Processing of Okazaki fragments to complete lagging strand DNA synthesis requires coordination among several proteins. RNA primers and DNA synthesised by DNA polymerase α are displaced by DNA polymerase δ to create bifurcated nucleic acid structures known as 5'-flaps. These 5'-flaps are removed by Flap Endonuclease 1 (FEN), a structure-specific nuclease whose divalent metal ion-dependent phosphodiesterase activity cleaves 5'-flaps with exquisite specificity. FENs are paradigms for the 5' nuclease superfamily, whose members perform a wide variety of roles in nucleic acid metabolism using a similar nuclease core domain that displays common biochemical properties and structural features. A detailed review of FEN structure is undertaken to show how DNA substrate recognition occurs and how FEN achieves cleavage at a single phosphate diester. A proposed double nucleotide unpairing trap (DoNUT) is discussed with regards to FEN and has relevance to the wider 5' nuclease superfamily. The homotrimeric proliferating cell nuclear antigen protein (PCNA) coordinates the actions of DNA polymerase, FEN and DNA ligase by facilitating the hand-off intermediates between each protein during Okazaki fragment maturation to maximise through-put and minimise consequences of intermediates being released into the wider cellular environment. FEN has numerous partner proteins that modulate and control its action during DNA replication and is also controlled by several post-translational modification events, all acting in concert to maintain precise and appropriate cleavage of Okazaki fragment intermediates during DNA replication

    Differential overexpression of SERPINA3 in human prion diseases

    Get PDF
    Prion diseases are fatal neurodegenerative disorders with sporadic, genetic or acquired etiologies. The molecular alterations leading to the onset and the spreading of these diseases are still unknown. In a previous work we identified a five-gene signature able to distinguish intracranially BSE-infected macaques from healthy ones, with SERPINA3 showing the most prominent dysregulation. We analyzed 128 suitable frontal cortex samples, from prion-affected patients (variant Creutzfeldt-Jakob disease (vCJD) n = 20, iatrogenic CJD (iCJD) n = 11, sporadic CJD (sCJD) n = 23, familial CJD (gCJD) n = 17, fatal familial insomnia (FFI) n = 9, Gerstmann-Sträussler-Scheinker syndrome (GSS)) n = 4), patients with Alzheimer disease (AD, n = 14) and age-matched controls (n = 30). Real Time-quantitative PCR was performed for SERPINA3 transcript, and ACTB, RPL19, GAPDH and B2M were used as reference genes. We report SERPINA3 to be strongly up-regulated in the brain of all human prion diseases, with only a mild up-regulation in AD. We show that this striking up-regulation, both at the mRNA and at the protein level, is present in all types of human prion diseases analyzed, although to a different extent for each specific disorder. Our data suggest that SERPINA3 may be involved in the pathogenesis and the progression of prion diseases, representing a valid tool for distinguishing different forms of these disorders in humans
    corecore