803 research outputs found
The creation of large photon-number path entanglement conditioned on photodetection
Large photon-number path entanglement is an important resource for enhanced
precision measurements and quantum imaging. We present a general constructive
protocol to create any large photon number path-entangled state based on the
conditional detection of single photons. The influence of imperfect detectors
is considered and an asymptotic scaling law is derived.Comment: 6 pages, 4 figure
Temperature dependent resistivity of spin-split subbands in GaAs 2D hole system
We calculate the temperature dependent resistivity in spin-split subbands
induced by the inversion asymmetry of the confining potential in GaAs 2D hole
systems. By considering both temperature dependent multisubband screening of
impurity disorder and hole-hole scattering we find that the strength of the
metallic behavior depends on the symmetry of the confining potential (i.e.,
spin-splitting) over a large range of hole density. At low density above the
metal-insulator transition we find that effective disorder reduces the
enhancement of the metallic behavior induced by spin-splitting. Our theory is
in good qualitative agreement with existing experiments
Shor-Preskill Type Security-Proofs for Concatenated Bennett-Brassard 1984 Quantum Key Distribution Protocol
We discuss long code problems in the Bennett-Brassard 1984 (BB84) quantum key
distribution protocol and describe how they can be overcome by concatenation of
the protocol. Observing that concatenated modified Lo-Chau protocol finally
reduces to the concatenated BB84 protocol, we give the unconditional security
of the concatenated BB84 protocol.Comment: 4 pages, RevTe
Obstructions to the Existence of Sasaki-Einstein Metrics
We describe two simple obstructions to the existence of Ricci-flat Kahler
cone metrics on isolated Gorenstein singularities or, equivalently, to the
existence of Sasaki-Einstein metrics on the links of these singularities. In
particular, this also leads to new obstructions for Kahler-Einstein metrics on
Fano orbifolds. We present several families of hypersurface singularities that
are obstructed, including 3-fold and 4-fold singularities of ADE type that have
been studied previously in the physics literature. We show that the AdS/CFT
dual of one obstruction is that the R-charge of a gauge invariant chiral
primary operator violates the unitarity bound.Comment: 35 pages, 1 figure; references and a footnote adde
Dark energy and dark matter from an inhomogeneous dilaton
A cosmological scenario is proposed where the dark matter (DM) and dark
energy (DE) of the universe are two simultaneous manifestations of an
inhomogenous dilaton. The equation of state of the field is scale-dependent and
pressureless at galactic and larger scales and it has negative pressure as a DE
at very large scales. The dilaton drives an inflationary phase followed by a
kinetic energy-dominated one, as in the "quintessential inflation" model
introduced by Peebles & Vilenkin, and soon after the end of inflation particle
production seeds the first inhomogeneities that lead to galaxy formation. The
dilaton is trapped near the minimum of the potential where it oscillates like a
massive field, and the excess of kinetic energy is dissipated via the mechanism
of "gravitational cooling" first introduced by Seidel & Suen. The
inhomogeneities therefore behave like solitonic oscillations around the minimum
of the potential, known as "oscillatons", that we propose account for most DM
in galaxies. Those regions where the dilaton does not transform enough kinetic
energy into reheating or carry an excess of it from regions that have cooled,
evolve to the tail of the potential as DE, driving the acceleration of the
universe.Comment: 9 pages, 8 figures, uses revtex, submitted PR
Tachyon warm inflationary universe model in the weak dissipative regime
Warm inflationary universe model in a tachyon field theory is studied in the
weak dissipative regime. We develop our model for an exponential potential and
the dissipation parameter =constant. We describe scalar and
tensor perturbations for this scenario.Comment: 9 pages, accepted by European Physical Journal
Assessment of Financial Risk Prediction Models with Multi-criteria Decision Making Methods
A wide range of classification models have been explored for financial risk prediction, but conclusions on which technique behaves better may vary when different performance evaluation measures are employed. Accordingly, this paper proposes the use of multiple criteria decision making tools in order to give a ranking of algorithms. More specifically, the selection of the most appropriate credit risk prediction method is here modeled as a multi-criteria decision making problem that involves a number of performance measures (criteria) and classification techniques (alternatives). An empirical study is carried out to evaluate the performance of ten algorithms over six real-life credit risk data sets. The results reveal that the use of a unique performance measure may lead to unreliable conclusions, whereas this situation can be overcome by the application of multi-criteria decision making techniques
Decay and Continuity of Boltzmann Equation in Bounded Domains
Boundaries occur naturally in kinetic equations and boundary effects are
crucial for dynamics of dilute gases governed by the Boltzmann equation. We
develop a mathematical theory to study the time decay and continuity of
Boltzmann solutions for four basic types of boundary conditions: inflow,
bounce-back reflection, specular reflection, and diffuse reflection. We
establish exponential decay in norm for hard potentials for
general classes of smooth domains near an absolute Maxwellian. Moreover, in
convex domains, we also establish continuity for these Boltzmann solutions away
from the grazing set of the velocity at the boundary. Our contribution is based
on a new decay theory and its interplay with delicate
decay analysis for the linearized Boltzmann equation, in the presence of many
repeated interactions with the boundary.Comment: 89 pages
Small BGK waves and nonlinear Landau damping
Consider 1D Vlasov-poisson system with a fixed ion background and periodic
condition on the space variable. First, we show that for general homogeneous
equilibria, within any small neighborhood in the Sobolev space W^{s,p}
(p>1,s<1+(1/p)) of the steady distribution function, there exist nontrivial
travelling wave solutions (BGK waves) with arbitrary minimal period and
traveling speed. This implies that nonlinear Landau damping is not true in
W^{s,p}(s<1+(1/p)) space for any homogeneous equilibria and any spatial period.
Indeed, in W^{s,p} (s<1+(1/p)) neighborhood of any homogeneous state, the long
time dynamics is very rich, including travelling BGK waves, unstable
homogeneous states and their possible invariant manifolds. Second, it is shown
that for homogeneous equilibria satisfying Penrose's linear stability
condition, there exist no nontrivial travelling BGK waves and unstable
homogeneous states in some W^{s,p} (p>1,s>1+(1/p)) neighborhood. Furthermore,
when p=2,we prove that there exist no nontrivial invariant structures in the
H^{s} (s>(3/2)) neighborhood of stable homogeneous states. These results
suggest the long time dynamics in the W^{s,p} (s>1+(1/p)) and particularly, in
the H^{s} (s>(3/2)) neighborhoods of a stable homogeneous state might be
relatively simple. We also demonstrate that linear damping holds for initial
perturbations in very rough spaces, for linearly stable homogeneous state. This
suggests that the contrasting dynamics in W^{s,p} spaces with the critical
power s=1+(1/p) is a trully nonlinear phenomena which can not be traced back to
the linear level
A multiwavelength study of the supernova remnant G296.8-0.3
We report XMM-Newton observations of the Galactic supernova remnant
G296.8-0.3, together with complementary radio and infrared data. The spatial
and spectral properties of the X-ray emission, detected towards G296.8-0.3, was
investigated in order to explore the possible evolutionary scenarios and the
physical connexion with its unusual morphology detected at radio frequencies.
G296.8-0.3 displays diffuse X-ray emission correlated with the peculiar radio
morphology detected in the interior of the remnant and with the shell-like
radio structure observed to the northwest side of the object. The X-ray
emission peaks in the soft/medium energy range (0.5-3.0 keV). The X-ray
spectral analysis confirms that the column density is high (NH \sim 0.64 x
10^{22} cm^{-2}) which supports a distant location (d>9 kpc) for the SNR. Its
X-ray spectrum can be well represented by a thermal (PSHOCK) model, with kT
\sim 0.86 keV, an ionization timescale of 6.1 x 10^{10} cm^{-3} s, and low
abundance (0.12 Z_sun). The 24 microns observations show shell-like emission
correlated with part of the northwest and southeast boundaries of the SNR. In
addition a point-like X-ray source is also detected close to the geometrical
center of the radio SNR. The object presents some characteristics of the
so-called compact central objects (CCO). Its X-ray spectrum is consistent with
those found at other CCOs and the value of NH is consistent with that of
G296.8-0.3, which suggests a physical connexion with the SNR.Comment: Accepted for publication in Astrophysics & Space Scienc
- …