29,550 research outputs found

    Conserved cosmological structures in the one-loop superstring effective action

    Get PDF
    A generic form of low-energy effective action of superstring theories with one-loop quantum correction is well known. Based on this action we derive the complete perturbation equations and general analytic solutions in the cosmological spacetime. Using the solutions we identify conserved quantities characterizing the perturbations: the amplitude of gravitational wave and the perturbed three-space curvature in the uniform-field gauge both in the large-scale limit, and the angular-momentum of rotational perturbation are conserved independently of changing gravity sector. Implications for calculating perturbation spectra generated in the inflation era based on the string action are presented.Comment: 5 pages, no figure, To appear in Phys. Rev.

    Base manifolds for fibrations of projective irreducible symplectic manifolds

    Get PDF
    Given a projective irreducible symplectic manifold MM of dimension 2n2n, a projective manifold XX and a surjective holomorphic map f:M→Xf:M \to X with connected fibers of positive dimension, we prove that XX is biholomorphic to the projective space of dimension nn. The proof is obtained by exploiting two geometric structures at general points of XX: the affine structure arising from the action variables of the Lagrangian fibration ff and the structure defined by the variety of minimal rational tangents on the Fano manifold XX

    A conserved variable in the perturbed hydrodynamic world model

    Full text link
    We introduce a scalar-type perturbation variable Ω\Phi which is conserved in the large-scale limit considering general sign of three-space curvature (KK), the cosmological constant (Λ\Lambda), and time varying equation of state. In a pressureless medium Ω\Phi is {\it exactly conserved} in all scales.Comment: 4 pages, no figure, To appear in Phys. Rev.

    Unified Analysis of Cosmological Perturbations in Generalized Gravity

    Full text link
    In a class of generalized Einstein's gravity theories we derive the equations and general asymptotic solutions describing the evolution of the perturbed universe in unified forms. Our gravity theory considers general couplings between the scalar field and the scalar curvature in the Lagrangian, thus includes broad classes of generalized gravity theories resulting from recent attempts for the unification. We analyze both the scalar-type mode and the gravitational wave in analogous ways. For both modes the large scale evolutions are characterized by the same conserved quantities which are valid in the Einstein's gravity. This unified and simple treatment is possible due to our proper choice of the gauges, or equivalently gauge invariant combinations.Comment: 4 pages, revtex, no figure

    Quantum fluctuations of Cosmological Perturbations in Generalized Gravity

    Get PDF
    Recently, we presented a unified way of analysing classical cosmological perturbation in generalized gravity theories. In this paper, we derive the perturbation spectrums generated from quantum fluctuations again in unified forms. We consider a situation where an accelerated expansion phase of the early universe is realized in a particular generic phase of the generalized gravity. We take the perturbative semiclassical approximation which treats the perturbed parts of the metric and matter fields as quantum mechanical operators. Our generic results include the conventional power-law and exponential inflations in Einstein's gravity as special cases.Comment: 5 pages, revtex, no figure

    Efficient Schemes for Reducing Imperfect Collective Decoherences

    Get PDF
    We propose schemes that are efficient when each pair of qubits undergoes some imperfect collective decoherence with different baths. In the proposed scheme, each pair of qubits is first encoded in a decoherence-free subspace composed of two qubits. Leakage out of the encoding space generated by the imperfection is reduced by the quantum Zeno effect. Phase errors in the encoded bits generated by the imperfection are reduced by concatenation of the decoherence-free subspace with either a three-qubit quantum error correcting code that corrects only phase errors or a two-qubit quantum error detecting code that detects only phase errors, connected with the quantum Zeno effect again.Comment: no correction, 3 pages, RevTe

    Spacetime Slices and Surfaces of Revolution

    Full text link
    Under certain conditions, a (1+1)(1+1)-dimensional slice g^\hat{g} of a spherically symmetric black hole spacetime can be equivariantly embedded in (2+1)(2+1)-dimensional Minkowski space. The embedding depends on a real parameter that corresponds physically to the surface gravity Îș\kappa of the black hole horizon. Under conditions that turn out to be closely related, a real surface that possesses rotational symmetry can be equivariantly embedded in 3-dimensional Euclidean space. The embedding does not obviously depend on a parameter. However, the Gaussian curvature is given by a simple formula: If the metric is written g=ϕ(r)−1dr2+ϕ(r)dΞ2g = \phi(r)^{-1} dr^2 + \phi(r) d\theta^2, then \K_g=-{1/2}\phi''(r). This note shows that metrics gg and g^\hat{g} occur in dual pairs, and that the embeddings described above are orthogonal facets of a single phenomenon. In particular, the metrics and their respective embeddings differ by a Wick rotation that preserves the ambient symmetry. Consequently, the embedding of gg depends on a real parameter. The ambient space is not smooth, and Îș\kappa is inversely proportional to the cone angle at the axis of rotation. Further, the Gaussian curvature of g^\hat{g} is given by a simple formula that seems not to be widely known.Comment: 15 pages, added reference

    Spin asymmetries in jet-hyperon production at LHC

    Full text link
    We consider polarized Lambda hyperon production in proton-proton scattering, p p -> (\Lambda^\uparrow jet) jet X, in the kinematical region of the LHC experiments, in particular the ALICE experiment. We present a new Lambda polarization observable that arises from the Sivers effect in the fragmentation process. It can be large even at midrapidity and therefore, is of interest for high energy hadron collider experiments. Apart from its potential to shed light on the mechanisms behind the phenomenon of Lambda polarization arising in unpolarized hadronic collisions, the new observable in principle also allows to test the possible color flow dependence of single spin asymmetries and the (non)universality of transverse momentum dependent fragmentation functions.Comment: 11 pages, 10 eps figures; minor modifications, conclusions unchanged, version to be publishe
    • 

    corecore