23,274 research outputs found

    A review of near-wall Reynolds-stress

    Get PDF
    The advances made in second-order near-wall turbulence closures are summarized. All closures examined are based on some form of high Reynolds number models for the Reynolds stress and the turbulent kinetic energy dissipation rate equations. Consequently, most near-wall closures proposed to data attempt to modify the high Reynolds number models for the dissipation rate equation so that the resultant models are applicable all the way to the wall. The near-wall closures are examined for their asymptotic behavior so that they can be compared with the proper near-wall behavior of the exact equations. A comparison of the closure's performance in the calculation of a low Reynolds number plane channel flow is carried out. In addition, the closures are evaluated for their ability to predict the turbulence statistics and the limiting behavior of the structure parameters compared to direct simulation data

    Singularities in scalar-tensor gravity

    Full text link
    The analysis of certain singularities in scalar-tensor gravity contained in a recent paper is completed, and situations are pointed out in which these singularities cannot occur.Comment: 6 pages, LaTe

    Low-Frequency Band Noise of Rotary Compressor

    Get PDF

    The Origin of Structures in Generalized Gravity

    Get PDF
    In a class of generalized gravity theories with general couplings between the scalar field and the scalar curvature in the Lagrangian, we can describe the quantum generation and the classical evolution of both the scalar and tensor structures in a simple and unified manner. An accelerated expansion phase based on the generalized gravity in the early universe drives microscopic quantum fluctuations inside a causal domain to expand into macroscopic ripples in the spacetime metric on scales larger than the local horizon. Following their generation from quantum fluctuations, the ripples in the metric spend a long period outside the causal domain. During this phase their evolution is characterized by their conserved amplitudes. The evolution of these fluctuations may lead to the observed large scale structures of the universe and anisotropies in the cosmic microwave background radiation.Comment: 5 pages, latex, no figur

    Phase-coherent transport in catalyst-free vapor phase deposited Bi2_2Se3_3 crystals

    Full text link
    Free-standing Bi2_2Se3_3 single crystal flakes of variable thickness are grown using a catalyst-free vapor-solid synthesis and are subsequently transferred onto a clean Si++^{++}/SiO2_2 substrate where the flakes are contacted in Hall bar geometry. Low temperature magneto-resistance measurements are presented which show a linear magneto-resistance for high magnetic fields and weak anti-localization (WAL) at low fields. Despite an overall strong charge carrier tunability for thinner devices, we find that electron transport is dominated by bulk contributions for all devices. Phase coherence lengths \l_\phi as extracted from WAL measurements increase linearly with increasing electron density exceeding 1ÎĽ1 \mu m at 1.7 K. While \l_\phi is in qualitative agreement with electron electron interaction-induced dephasing, we find that spin flip scattering processes limit \l_\phi at low temperatures.Comment: 8 pages, 5 figure

    Manifestation of pseudogap in ab-plane optical characteristics

    Full text link
    A model in which a gap forms in the renormalized electronic density of state (DOS) with missing states recovered just above the pseudogap Δpg\Delta_{pg}, is able to give a robust description of the striking, triangular like, peak seen in the real part of the optical self-energy of underdoped cuprates. We use this model to explore the effect of the pseudogap on the real part of the optical conductivity and on the partial sum rule associated with it. An important result is that the optical spectral weight redistributes over a much larger frequency window than it does in the DOS.Comment: 12 pages, 3 figures. Submitted to Journal of Physics: Condensed Matte

    Lorentz invariance of entanglement classes in multipartite systems

    Full text link
    We analyze multipartite entanglement in systems of spin-1/2 particles from a relativistic perspective. General conditions which have to be met for any classification of multipartite entanglement to be Lorentz invariant are derived, which contributes to a physical understanding of entanglement classification. We show that quantum information in a relativistic setting requires the partition of the Hilbert space into particles to be taken seriously. Furthermore, we study exemplary cases and show how the spin and momentum entanglement transforms relativistically in a multipartite setting.Comment: v2: 5 pages, 4 figures, minor changes to main body, journal references update
    • …
    corecore