24,394 research outputs found

    Efficient Schemes for Reducing Imperfect Collective Decoherences

    Get PDF
    We propose schemes that are efficient when each pair of qubits undergoes some imperfect collective decoherence with different baths. In the proposed scheme, each pair of qubits is first encoded in a decoherence-free subspace composed of two qubits. Leakage out of the encoding space generated by the imperfection is reduced by the quantum Zeno effect. Phase errors in the encoded bits generated by the imperfection are reduced by concatenation of the decoherence-free subspace with either a three-qubit quantum error correcting code that corrects only phase errors or a two-qubit quantum error detecting code that detects only phase errors, connected with the quantum Zeno effect again.Comment: no correction, 3 pages, RevTe

    Dramatic Mobility Enhancements in Doped SrTiO3 Thin Films by Defect Management

    Full text link
    We report bulk-quality n-type SrTiO3 (n-SrTiO3) thin films fabricated by pulsed laser deposition, with electron mobility as high as 6600 cm2 V-1 s-1 at 2 K and carrier density as low as 2.0 x 10^18cm-3 (~ 0.02 at. %), far exceeding previous pulsed laser deposition films. This result stems from precise strontium and oxygen vacancy defect chemistry management, providing a general approach for defect control in complex oxide heteroepitaxy.Comment: 13 pages, 4 figure

    Stoichiometry control of the electronic properties of the LaAlO_3/SrTiO_3 heterointerface

    Full text link
    We investigate the effect of the laser parameters of pulsed laser deposition on the film stoichiometry and electronic properties of LaAlO_3/SrTiO_3 (001) heterostructures. The La/Al ratio in the LaAlO_3 films was varied over a wide range from 0.88 to 1.15, and was found to have a strong effect on the interface conductivity. In particular, the carrier density is modulated over more than two orders of magnitude. The film lattice expansion, caused by cation vacancies, is found to be the important functional parameter. These results can be understood to arise from the variations in the electrostatic boundary conditions, and their resolution, with stoichiometry.Comment: 4 pages, 3 figures, submitted for publicatio

    Modulation Doping of a Mott Quantum Well by a Proximate Polar Discontinuity

    Full text link
    We present evidence for hole injection into LaAlO3/LaVO3/LaAlO3 quantum wells near a polar surface of LaAlO3 (001). As the surface is brought in proximity to the LaVO3 layer, an exponential drop in resistance and a decreasing positive Seebeck coefficient is observed below a characteristic coupling length of 10-15 unit cells. We attribute this behavior to a crossover from an atomic reconstruction of the AlO2-terminated LaAlO3 surface to an electronic reconstruction of the vanadium valence. These results suggest a general approach to tunable hole-doping in oxide thin film heterostructures.Comment: 16 pages, 7 figure

    Negative Differential Resistance Induced by Mn Substitution at SrRuO3/Nb:SrTiO3 Schottky Interfaces

    Full text link
    We observed a strong modulation in the current-voltage characteristics of SrRuO3_3/Nb:SrTiO3_3 Schottky junctions by Mn substitution in SrRuO3_3, which induces a metal-insulator transition in bulk. The temperature dependence of the junction ideality factor indicates an increased spatial inhomogeneity of the interface potential with substitution. Furthermore, negative differential resistance was observed at low temperatures, indicating the formation of a resonant state by Mn substitution. By spatially varying the position of the Mn dopants across the interface with single unit cell control, we can isolate the origin of this resonant state to the interface SrRuO3_3 layer. These results demonstrate a conceptually different approach to controlling interface states by utilizing the highly sensitive response of conducting perovskites to impurities

    Temperature Dependent Polarity Reversal in Au/Nb:SrTiO3 Schottky Junctions

    Full text link
    We have observed temperature-dependent reversal of the rectifying polarity in Au/Nb:SrTiO3 Schottky junctions. By simulating current-voltage characteristics we have found that the permittivity of SrTiO3 near the interface exhibits temperature dependence opposite to that observed in the bulk, significantly reducing the barrier width. At low temperature, tunneling current dominates the junction transport due both to such barrier narrowing and to suppressed thermal excitations. The present results demonstrate that novel junction properties can be induced by the interface permittivity

    Fermi surface and superconductivity in low-density high-mobility {\delta}-doped SrTiO3

    Full text link
    The electronic structure of low-density n-type SrTiO3 delta-doped heterostructures is investigated by angular dependent Shubnikov-de Haas oscillations. In addition to a controllable crossover from a three- to two-dimensional Fermi surface, clear beating patterns for decreasing dopant layer thicknesses are found. These indicate the lifting of the degeneracy of the conduction band due to subband quantization in the two-dimensional limit. Analysis of the temperature-dependent oscillations shows that similar effective masses are found for all components, associated with the splitting of the light electron pocket. The dimensionality crossover in the superconducting state is found to be distinct from the normal state, resulting in a rich phase diagram as a function of dopant layer thickness.Comment: 4 pages, 5 figures, submitted for publicatio
    corecore