12 research outputs found

    cuFE: High Performance Privacy Preserving Support Vector Machine with Inner-Product Functional Encryption

    Get PDF
    Privacy preservation is a sensitive issue in our modern society. It is becoming increasingly important in many applications in this ever-growing and highly connected digital era. Functional encryption is a computation on encrypted data paradigm that allows users to retrieve the evaluation of a function on encrypted data without revealing the data, thus effectively protecting users\u27 privacy. However, existing functional encryption implementations are still very time-consuming for practical deployment, especially when applied to machine learning applications that involve a huge amount of data. In this paper, we present a high-performance implementation of inner-product functional encryption (IPFE) based on ring-learning with errors on graphics processing units. We propose novel techniques to parallelize the Gaussian sampling, which is one of the most time-consuming operations in the IPFE scheme. We further execute a systematic investigation to select the best strategy for implementing number theoretic transform and inverse number theoretic transform for different security levels. Compared to the existing AVX2 implementation of IPFE, our implementation on a RTX 2060 GPU device can achieve 34.24x, 40.02x, 156.30x, and 18.76x speed-up for Setup, Encrypt, KeyGen, and Decrypt respectively. Finally, we propose a fast privacy-preserving Support Vector Machine (SVM) application to classify data securely using our GPU-accelerated IPFE scheme. Experimental results show that our implementation can classify 100 inputs with 591 support vectors in 688 ms (less than a second), which is 33.12x faster than the AVX2 version which takes 23 seconds

    Predicting breast tumor proliferation from whole-slide images : the TUPAC16 challenge

    Get PDF
    Tumor proliferation is an important biomarker indicative of the prognosis of breast cancer patients. Assessment of tumor proliferation in a clinical setting is a highly subjective and labor-intensive task. Previous efforts to automate tumor proliferation assessment by image analysis only focused on mitosis detection in predefined tumor regions. However, in a real-world scenario, automatic mitosis detection should be performed in whole-slide images (WSIs) and an automatic method should be able to produce a tumor proliferation score given a WSI as input. To address this, we organized the TUmor Proliferation Assessment Challenge 2016 (TUPAC16) on prediction of tumor proliferation scores from WSIs. The challenge dataset consisted of 500 training and 321 testing breast cancer histopathology WSIs. In order to ensure fair and independent evaluation, only the ground truth for the training dataset was provided to the challenge participants. The first task of the challenge was to predict mitotic scores, i.e., to reproduce the manual method of assessing tumor proliferation by a pathologist. The second task was to predict the gene expression based PAM50 proliferation scores from the WSI. The best performing automatic method for the first task achieved a quadratic-weighted Cohen's kappa score of κ = 0.567, 95% CI [0.464, 0.671] between the predicted scores and the ground truth. For the second task, the predictions of the top method had a Spearman's correlation coefficient of r = 0.617, 95% CI [0.581 0.651] with the ground truth. This was the first comparison study that investigated tumor proliferation assessment from WSIs. The achieved results are promising given the difficulty of the tasks and weakly-labeled nature of the ground truth. However, further research is needed to improve the practical utility of image analysis methods for this task

    Non-Zero Grid for Accurate 2-Bit Additive Power-of-Two CNN Quantization

    Get PDF
    Quantization is an effective technique to reduce the memory and computational complexity of CNNs. Recent advances utilize additive powers-of-two to perform non-uniform quantization, which resembles a normal distribution and shows better performance than uniform quantization. With powers-of-two quantization, the computational complexity is also largely reduced because the slow multiplication operations are replaced with lightweight shift operations. However, there are serious problems in the previously proposed grid formulation for 2-bit quantization. In particular, these powers-of-two schemes produce zero values, generating significant training error and causing low accuracy. In addition, due to improper grid formulation, they also fallback to uniform quantization when the quantization level reaches 2-bit. Due to these reasons, on large CNN like ResNet-110, these powers-of-two schemes may not even train properly. To resolve these issues, we propose a new non-zero grid formulation that enables 2-bit non-uniform quantization and allow the CNN to be trained successfully in every attempt, even for a large network. The proposed technique quantizes weight as power-of-two values and projects it close to the mean area through a simple constant product on the exponential part. This allows our quantization scheme to closely resemble a non-uniform quantization at 2-bit, enabling successful training at 2-bit quantization, which is not found in the previous work. The proposed technique achieves 70.57% accuracy on the CIFAR-100 dataset trained with ResNet-110. This result is 6.24% higher than the additive powers-of-two scheme which only achieves 64.33% accuracy. Beside achieving higher accuracy, our work also maintains the same memory and computational efficiency with the original additive powers-of-two scheme

    Identification of High-Priority Tributaries for Water Quality Management in Nakdong River Using Neural Networks and Grade Classification

    No full text
    To determine the high-priority tributaries that require water quality improvement in the Nakdong River, which is an important drinking water resource for southeastern Korea, data collected at 28 tributaries between 2013 and 2017 were analyzed. To analyze the water quality characteristics of the tributary streams, principal component analysis and factor analysis were performed. COD (chemical oxygen demand), TOC (total organic carbon), TP (total phosphorus), SS (suspended solids), and BOD (biochemical oxygen demand) were classified as the primary factors. In the self-organizing maps analysis using the unsupervised learning neural network model, the first factor showed a highly relevant pattern. To perform the grade classification, 11 parameters were selected. Six parameters are concentrations of the main parameters for the water quality standard assessment in South Korea. We added the pollution load densities for the selected five primary factors. Joochungang showed the highest pollution load density despite its small watershed area. According to the results of the grade classification method, Joochungang, Topyeongcheon, Hwapocheon, Chacheon, Gwangyeocheon, and Geumhogang were selected as tributaries requiring high-priority water quality management measures. From this study, it was concluded that neural network models and grade classification methods could be utilized to identify the high-priority tributaries for more directed and effective water quality management

    Basin-specific effect of global warming on endemic riverine fish in Korea

    No full text
    The differences in geographical setting among basins create variation in regional climate and local assemblages. Global warming might induce varying degree of changes in the biodiversity and distribution of freshwater fish through water temperature increase in each basin. We investigated the effect of global warming on the thermal habitat suitability of endemic riverine fish in the basin scale and the relationship between change in species loss rate and altitude within a basin. Surface air temperature projections based on A1B emission scenario were used to estimate water temperatures in the major basins of South Korea in the future decades. The thermal tolerances of 39 endemic fish species were estimated from water temperatures and abundances in the habitats using the weighted average regression model. The minimum water temperature was compared with the maximum thermal tolerances to simulate the change in thermal habitat suitability of each species in a basin. Global warming is expected to drive 2–20 species to the risk of removal at 4.3–35.5% of their thermal habitats during 2060–2080s. The effect was variable according to the species’ thermal tolerances and the level of basin-specific water temperature increase. The correlation between species loss rate and altitude was positive only when the relationship was considered separately for each basin. The results implied that global warming would greatly affect the suitable habitats of endemic fish before 2060s in Korean rivers. It was suggested that the biodiversity conservation efforts needs to incorporate the spatial heterogeneity in thermal regime among the basins.Water temperature increase due to global warming could decrease the thermal habitat suitability of Korean endemic riverine fish species within next several decades. The degree of decline in the habitat suitability would vary according to the basin-specific thermal regime and each species' thermal tolerance, as well as anthropogenic disturbances

    Predicting breast tumor proliferation from whole-slide images : The TUPAC16 challenge

    No full text
    Tumor proliferation is an important biomarker indicative of the prognosis of breast cancer patients. Assessment of tumor proliferation in a clinical setting is a highly subjective and labor-intensive task. Previous efforts to automate tumor proliferation assessment by image analysis only focused on mitosis detection in predefined tumor regions. However, in a real-world scenario, automatic mitosis detection should be performed in whole-slide images (WSIs) and an automatic method should be able to produce a tumor proliferation score given a WSI as input. To address this, we organized the TUmor Proliferation Assessment Challenge 2016 (TUPAC16) on prediction of tumor proliferation scores from WSIs. The challenge dataset consisted of 500 training and 321 testing breast cancer histopathology WSIs. In order to ensure fair and independent evaluation, only the ground truth for the training dataset was provided to the challenge participants. The first task of the challenge was to predict mitotic scores, i.e., to reproduce the manual method of assessing tumor proliferation by a pathologist. The second task was to predict the gene expression based PAM50 proliferation scores from the WSI. The best performing automatic method for the first task achieved a quadratic-weighted Cohen's kappa score of κ = 0.567, 95% CI [0.464, 0.671] between the predicted scores and the ground truth. For the second task, the predictions of the top method had a Spearman's correlation coefficient of r = 0.617, 95% CI [0.581 0.651] with the ground truth. This was the first comparison study that investigated tumor proliferation assessment from WSIs. The achieved results are promising given the difficulty of the tasks and weakly-labeled nature of the ground truth. However, further research is needed to improve the practical utility of image analysis methods for this task

    Predicting breast tumor proliferation from whole-slide images:The TUPAC16 challenge

    No full text
    \u3cp\u3eTumor proliferation is an important biomarker indicative of the prognosis of breast cancer patients. Assessment of tumor proliferation in a clinical setting is a highly subjective and labor-intensive task. Previous efforts to automate tumor proliferation assessment by image analysis only focused on mitosis detection in predefined tumor regions. However, in a real-world scenario, automatic mitosis detection should be performed in whole-slide images (WSIs) and an automatic method should be able to produce a tumor proliferation score given a WSI as input. To address this, we organized the TUmor Proliferation Assessment Challenge 2016 (TUPAC16) on prediction of tumor proliferation scores from WSIs. The challenge dataset consisted of 500 training and 321 testing breast cancer histopathology WSIs. In order to ensure fair and independent evaluation, only the ground truth for the training dataset was provided to the challenge participants. The first task of the challenge was to predict mitotic scores, i.e., to reproduce the manual method of assessing tumor proliferation by a pathologist. The second task was to predict the gene expression based PAM50 proliferation scores from the WSI. The best performing automatic method for the first task achieved a quadratic-weighted Cohen's kappa score of κ = 0.567, 95% CI [0.464, 0.671] between the predicted scores and the ground truth. For the second task, the predictions of the top method had a Spearman's correlation coefficient of r = 0.617, 95% CI [0.581 0.651] with the ground truth. This was the first comparison study that investigated tumor proliferation assessment from WSIs. The achieved results are promising given the difficulty of the tasks and weakly-labeled nature of the ground truth. However, further research is needed to improve the practical utility of image analysis methods for this task.\u3c/p\u3

    Predicting breast tumor proliferation from whole-slide images:The TUPAC16 challenge

    No full text
    \u3cp\u3eTumor proliferation is an important biomarker indicative of the prognosis of breast cancer patients. Assessment of tumor proliferation in a clinical setting is a highly subjective and labor-intensive task. Previous efforts to automate tumor proliferation assessment by image analysis only focused on mitosis detection in predefined tumor regions. However, in a real-world scenario, automatic mitosis detection should be performed in whole-slide images (WSIs) and an automatic method should be able to produce a tumor proliferation score given a WSI as input. To address this, we organized the TUmor Proliferation Assessment Challenge 2016 (TUPAC16) on prediction of tumor proliferation scores from WSIs. The challenge dataset consisted of 500 training and 321 testing breast cancer histopathology WSIs. In order to ensure fair and independent evaluation, only the ground truth for the training dataset was provided to the challenge participants. The first task of the challenge was to predict mitotic scores, i.e., to reproduce the manual method of assessing tumor proliferation by a pathologist. The second task was to predict the gene expression based PAM50 proliferation scores from the WSI. The best performing automatic method for the first task achieved a quadratic-weighted Cohen's kappa score of κ = 0.567, 95% CI [0.464, 0.671] between the predicted scores and the ground truth. For the second task, the predictions of the top method had a Spearman's correlation coefficient of r = 0.617, 95% CI [0.581 0.651] with the ground truth. This was the first comparison study that investigated tumor proliferation assessment from WSIs. The achieved results are promising given the difficulty of the tasks and weakly-labeled nature of the ground truth. However, further research is needed to improve the practical utility of image analysis methods for this task.\u3c/p\u3
    corecore