25 research outputs found

    Enuresis as a Presenting Symptom of Graves’ Disease: A Case Report

    Get PDF
    Enuresis is intermittent urinary incontinence during sleep at night in children aged 5 years or older. The main pathophysiology of enuresis involves nocturnal polyuria, abnormal sleep arousal, and low functional bladder capacity. In rare cases, enuresis is an early symptom of endocrine disorders such as diabetes or thyroid disorders. Herein, we report a case of a 12-year-old girl with enuresis as a rare initial presentation of Graves’ disease. She complained of nocturnal enuresis from a month before visiting our clinic. She also complained of urinary frequency, headache, and weight loss. On physical examination, she had tachycardia, intention tremors, and a diffuse goiter on her anterior neck with bruit on auscultation. Her thyroid function test results revealed hyperthyroidism, and Graves’ disease was diagnosed as the thyroid stimulating hormone receptor autoantibody was positive. After treatment for Graves’ disease with methimazole, symptoms of enuresis resolved within 2 weeks as she became clinically and biochemically euthyroid. In children with secondary enuresis, Graves’ disease should be considered as a differential diagnosis, and signs of hyperthyroidism should be checked for carefully

    Stabilization of Lead (Pb) and Zinc (Zn) in Contaminated Rice Paddy Soil Using Starfish: A Preliminary Study

    Get PDF
    Lead (Pb) and zinc (Zn) contaminated rice paddy soil was stabilized using natural (NSF) and calcined starfish (CSF). Contaminated soil was treated with NSF in the range of 0-10 wt.% and CSF in the range of 0-5 wt.% and cured for 28 days. Toxicity characteristic leaching procedure (TCLP) test was used to evaluate effectiveness of starfish treatment. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) analyses were conducted to investigate the mechanism responsible for effective immobilization of Pb and Zn. Experimental results suggest that NSF and CSF treatments effectively immobilize Pb and Zn in treated rice paddy soil. TCLP levels for Pb and Zn were reduced with increasing NSF and CSF dosage. Comparison of the two treatment methods reveals that CSF treatment is more effective than NSF treatment. Leachability of the two metals is reduced approximately 58% for Pb and 51% for Zn, upon 10 wt.% NSF treatment. More pronounced leachability reductions, 93% for Pb and 76% for Zn, are achieved upon treatment with 5 wt.% CSF. Sequential extraction results reveal that NSF and CSF treatments of contaminated soil generated decrease in exchangeable/weak acid Pb and Zn soluble fractions, and increase of residual Pb and Zn fractions. Results for the SEM-EDX sample treated with 5 wt.% CSF indicate that effective Pb and Zn immobilization is most probably associated with calcium silicate hydrates (CSHs) and calcium aluminum hydrates (CAHs)

    Quality Improvement of Acidic Soils by Biochar Derived from Renewable Materials

    Get PDF
    Biochar derived from waste plant materials and agricultural residues was used to improve the quality of an acidic soil. The acidic soil was treated for 1 month with both soy bean stover-derived biochar and oak-derived biochar in the range of 1 to 5 wt% for pH improvement and exchangeable cation enhancement. Following 1 month of treatment, the soil pH was monitored and exchangeable cations were measured. Moreover, a maize growth experiment was performed for 14 days with selected treated soil samples to confirm the effectiveness of the treatment. The results showed that the pH of the treated acidic soil increased by more than 2 units, and the exchangeable cation values were greatly enhanced upon treatment with 5 wt% of both biochars, after 1 month of curing. Maize growth was superior in the 3 wt% biochar-treated samples compared to the control sample. The presented results demonstrate the effective use of biochar derived from renewable materials such as waste plant materials and agricultural residues for quality improvement of acidic soils

    ANALYSIS OF THE KICKING LEG IN TAEKWONDO

    No full text
    The kinetic analysis using engineering dynamic equations have been used to enhance the understanding of segmental movements. The resultant muscular torque, the results of the kinetic analysis has provided insight on the interplay between muscular action and movements of the body segment (Dillman, 1970; Miller and Nelson, 1976). Elftman(1940) studied a sprinter to determine the rate of muscular work while Plagenhoef (1968) investigated the patterns of muscular torque for the leg during distance running. Plagenhoef (1968) also compared the muscular torque patterns of the leg during a subject ran with and without ankle weights in the study and reported that an entirely different pattern of muscular torque was observed when running with ankle weights. Dillman (1970) developed the techniques for performing kinetic analysis and showed the way of obtaining various types of information that may be obtained from such an analysis. He reported resultant muscular torque patterns, sequence of dominant muscular group activity and pattern of the types of muscular contraction of the recovery leg during sprint running using six male subject in the study. R.F. Zernick and E.M. Roberts (1976) analyzed the relative contribution of selected kicking limb segments to systematic increments in resultant limb velocity using the dynamic equations based on a total of 45 soccer toe kicks. Phillips, Roberts and Huang(1978) calculated the non-muscular interaction of the thigh and shank in the soccer kick. Phillips ond Robert (1980) also modeled and calculated the nonmuscular interaction of the thigh and shank in the swing limb of runners. Although the kinetic analysis of the segmental movements provides important informations, the reported research has been limitted to running and soccer kick, In order to increase our understanding about th segmental movements many segmental movements involved in other sports skill must be analyzed. The Taekwondo, Korean traditional martial art, has been developed as an world wide sport and involved various kind of kicking techniques. However very little of the reported research has been devoted to their investigations

    Virus Outbreaks in Chemical and Biological Sensors

    No full text
    Filamentous bacteriophages have successfully been used to detect chemical and biological analytes with increased selectivity and sensitivity. The enhancement largely originates not only from the ability of viruses to provide a platform for the surface display of a wide range of biological ligands, but also from the geometric morphologies of the viruses that constitute biomimetic structures with larger surface area-to-volume ratio. This review will appraise the mechanism of multivalent display of the viruses that enables surface modification of virions either by chemical or biological methods. The accommodation of functionalized virions to various materials, including polymers, proteins, metals, nanoparticles, and electrodes for sensor applications will also be discussed

    Reductive Dechlorination of Tetrachloroethylene by Fe(II) in Cement Slurries

    No full text

    Amarillo National Resource Center for Plutonium

    No full text
    Chromium is a primary inorganic contaminant of concern at the Pantex Plant. Chromium concentrations have been found to be two orders of magnitude higher than the drinking water standards, particularly in certain wells in the perched aquifer below Zone 12. In situ reduction of a mobile form of chromium, Cr(VI) to an immobile form, Cr(III), was examined as a viable option to active soil restoration. Successfully immobilizing chromium in the vadose zone as Cr(III) will reduce the amount of chromium that reaches the groundwater table. The results from the solution experiments indicated that chromium was rapidly and stoichiometrically reduced by Fe(II) in solution. Also, the slurry experiments showed that the aquifer solids removed Fe(II) from solution, but a portion of the iron removed remained available for reaction with Cr(VI), but at a slower rate. A model to predict different amounts of iron pseudo-components was developed, which allowed prediction of iron amounts required to reduce ch..

    Efficient Cloth Pattern Recognition Using Random Ferns

    No full text

    Leaky Gum: The Revisited Origin of Systemic Diseases

    No full text
    The oral cavity is the gateway for microorganisms into your body where they disseminate not only to the directly connected respiratory and digestive tracts but also to the many remote organs. Oral microbiota, travelling to the end of the intestine and circulating in our bodies through blood vessels, not only affect a gut microbiome profile but also lead to many systemic diseases. By gathering information accumulated from the era of focal infection theory to the age of revolution in microbiome research, we propose a pivotal role of “leaky gum”, as an analogy of “leaky gut”, to underscore the importance of the oral cavity in systemic health. The oral cavity has unique structures, the gingival sulcus (GS) and the junctional epithelium (JE) below the GS, which are rarely found anywhere else in our body. The JE is attached to the tooth enamel and cementum by hemidesmosome (HD), which is structurally weaker than desmosome and is, thus, vulnerable to microbial infiltration. In the GS, microbial biofilms can build up for life, unlike the biofilms on the skin and intestinal mucosa that fall off by the natural process. Thus, we emphasize that the GS and the JE are the weakest leaky point for microbes to invade the human body, making the leaky gum just as important as, or even more important than, the leaky gut
    corecore