18,347 research outputs found
Festival and Travel Planning Network
Travellers who interested in often use the internet (World Wide Web) as a research medium because many websites post-festival and travelling information such as festival, scenic spots, resorts, and local restaurants. However, without an organized research medium, many people who interested in culture discover the difficulty of focusing on research or making a choice from the massive festival and travel-related categories and sites.
This paper describes and integrates a website with many festival and travel-related functions into one platform called Festival and Travel Planning Network. This platform allows easy access for users to obtain various festival information, city travel, restaurant, and hotel guidelines in Taiwan. This network automatically helps travellers to plan their tours and find accommodations by simply selecting by their interests of festival visits and hotel types on the website.
The Festival and Travel Planning Network also provides online travelling suitcases allowing members to bookmark their favourite travel spots. The Festival and Travel Planning Network website is http://140.131.84.199/holiday/index/index_e.htm. For maximum quality, display resolution should be set at 1024×768. As for technical support, the website uses Internet Information Services as the webserver and ASP.NET 3.5 as the web application framework. The database server is performed by SQL Server 2008 to organize and manage data. The webpage graphic and animation designer used Ulead PhotoImpact X3 and Adobe Photoshop CS5 and Flash CS5 as design tool
Nonsemisimple Fusion Algebras and the Verlinde Formula
We find a nonsemisimple fusion algebra F_p associated with each (1,p)
Virasoro model. We present a nonsemisimple generalization of the Verlinde
formula which allows us to derive F_p from modular transformations of
characters.Comment: LaTeX (amsart, xypic, times), 35p
A conserved variable in the perturbed hydrodynamic world model
We introduce a scalar-type perturbation variable which is conserved in
the large-scale limit considering general sign of three-space curvature (),
the cosmological constant (), and time varying equation of state. In a
pressureless medium is {\it exactly conserved} in all scales.Comment: 4 pages, no figure, To appear in Phys. Rev.
Relativistic Hydrodynamic Cosmological Perturbations
Relativistic cosmological perturbation analyses can be made based on several
different fundamental gauge conditions. In the pressureless limit the variables
in certain gauge conditions show the correct Newtonian behaviors. Considering
the general curvature () and the cosmological constant () in the
background medium, the perturbed density in the comoving gauge, and the
perturbed velocity and the perturbed potential in the zero-shear gauge show the
same behavior as the Newtonian ones in general scales. In the first part, we
elaborate these Newtonian correspondences. In the second part, using the
identified gauge-invariant variables with correct Newtonian correspondences, we
present the relativistic results with general pressures in the background and
perturbation. We present the general super-sound-horizon scale solutions of the
above mentioned variables valid for general , , and generally
evolving equation of state. We show that, for vanishing , the
super-sound-horizon scale evolution is characterised by a conserved variable
which is the perturbed three-space curvature in the comoving gauge. We also
present equations for the multi-component hydrodynamic situation and for the
rotation and gravitational wave.Comment: 16 pages, no figure, To appear in Gen. Rel. Gra
Conserved cosmological structures in the one-loop superstring effective action
A generic form of low-energy effective action of superstring theories with
one-loop quantum correction is well known. Based on this action we derive the
complete perturbation equations and general analytic solutions in the
cosmological spacetime. Using the solutions we identify conserved quantities
characterizing the perturbations: the amplitude of gravitational wave and the
perturbed three-space curvature in the uniform-field gauge both in the
large-scale limit, and the angular-momentum of rotational perturbation are
conserved independently of changing gravity sector. Implications for
calculating perturbation spectra generated in the inflation era based on the
string action are presented.Comment: 5 pages, no figure, To appear in Phys. Rev.
String theoretic axion coupling and the evolution of cosmic structures
We examine the effects of the axion coupling to on the evolution
of cosmic structures. It is shown that the evolutions of the scalar- and
vector-type perturbations are not affected by this axion coupling. However the
axion coupling causes an asymmetric evolution of the two polarization states of
the tensor-type perturbation, which may lead to a sizable polarization
asymmetry in the cosmological gravitational wave if inflation involves a period
in which the axion coupling is important. The polarization asymmetry produced
during inflation are conserved over the subsequent evolution as long as the
scales remain in the large-scale limit, and thus this may lead to an observable
trace in the cosmic microwave background radiation.Comment: 10 pages, REVte
Parity violation in deuteron photo-disintegration
We analyze the energy dependence for two types of parity-non-conserving
(PNC) asymmetries in the reaction in the near-threshold
region. The first one is the asymmetry in reaction with circularly polarized
photon beam and unpolarized deuteron target. The second one corresponds to
those with an unpolarized photon beam and polarized target. We find that the
two asymmetries have quite different energy dependence, and their shapes are
sensitive to the PNC-meson exchange coupling constants.
The predictions for the future possible experiments to provide definite
constraints for the PNC-coupling constants are discussed.Comment: 22 pages, 12 figures. Submitted to Phys.Rev.C 10Oct.0
Optical Self Energy in Graphene due to Correlations
In highly correlated systems one can define an optical self energy in analogy
to its quasiparticle (QP) self energy counterpart. This quantity provides
useful information on the nature of the excitations involved in inelastic
scattering processes. Here we calculate the self energy of the intraband
optical transitions in graphene originating in the electron-electron
interaction (EEI) as well as electron-phonon interaction (EPI). Although optics
involves an average over all momenta () of the charge carriers, the
structure in the optical self energy is nevertheless found to mirror mainly
that of the corresponding quasiparticles for equal to or near the Fermi
momentum . Consequently plasmaronic structures which are associated with
momenta near the Dirac point at are not important in the intraband
optical response. While the structure of the electron-phonon interaction (EPI)
reflects the sharp peaks of the phonon density of states, the excitation
spectrum associated with the electron-electron interaction is in comparison
structureless and flat and extends over an energy range which scales linearly
with the value of the chemical potential. Modulations seen on the edge of the
interband optical conductivity as it rises towards its universal background
value are traced to structure in the quasiparticle self energies around
of the lower Dirac cone associated with the occupied states.Comment: 30 pages, 10 figure
Cosmological Gravitational Wave in a Gravity with Quadratic Order Curvature Couplings
We present a set of equations describing the cosmological gravitational wave
in a gravity theory with quadratic order gravitational coupling terms which
naturally arise in quantum correction procedures. It is known that the
gravitational wave equation in the gravity theories with a general term
in the action leads to a second order differential equation with the only
correction factor appearing in the damping term. The case for a
term is completely different. The gravitational wave is described by a fourth
order differential equation both in time and space. However, curiously, we find
that the contributions to the background evolution are qualitatively the same
for both terms.Comment: 4 pages, revtex, no figure
Delamination of Layered Zeolite Precursors under Mild Conditions: Synthesis of UCB-1 via Fluoride/Chloride Anion-Promoted Exfoliation
New material UCB-1 is synthesized via the delamination of zeolite precursor MCM-22 (P) at pH 9 using an aqueous solution of cetyltrimethylammonium bromide, tetrabutylammonium fluoride, and tetrabutylammonium chloride at 353 K. Characterization by powder X-ray
diffraction, transmission electron microscopy, and nitrogen physisorption at 77 K indicates the same degree of delamination in UCB-1 as previously reported for delaminated zeolite precursors, which require a pH of greater than 13.5 and sonication in order to achieve
exfoliation. UCB-1 consists of a high degree of structural integrity via ^(29)Si MAS NMR and Fourier transform infrared spectroscopies, and no detectable formation of amorphous silica phase via transmission electron microscopy. Porosimetry measurements demonstrate a lack of
hysteresis in the N_2 adsorption/desorption isotherms and macroporosity in UCB-1. The new method is generalizable to a variety of Si:Al ratios and leads to delaminated zeolite precursor materials lacking amorphization
- …