2,850 research outputs found
Hybridization gap and Fano resonance in SmB
We present results of Scanning Tunneling Microscopy and Spectroscopy (STS)
measurements on the "Kondo insulator" SmB. The vast majority of surface
areas investigated was reconstructed but, infrequently, also patches of varying
size of non-reconstructed, Sm- or B-terminated surfaces were found. On the
smallest patches, clear indications for the hybridization gap and
inter-multiplet transitions were observed. On non-reconstructed surface areas
large enough for coherent co-tunneling we were able to observe clear-cut Fano
resonances. Our locally resolved STS indicated considerable finite conductance
on all surfaces independent of their structure.Comment: 5 pages, 4 figure
Expert System Algorithms for Identifying Radiated Emission Problems in Printed Circuit Boards
Radiated emission algorithms for a printed circuit board EMC expert system are described. The expert system mimics the thinking processes that human EMC engineers would use to analyze circuit boards and make design recommendations. Working with limited information about the enclosure, cables or the exact nature of the signals, the expert system evaluates different structures on the printed circuit board looking for potentially strong radiated emission sources. Results obtained from the analysis of a sample printed circuit board are provided to demonstrate how the expert system quickly identifies problems that would otherwise be difficult to locate
c-di-GMP modulates type IV MSHA pilus retraction and surface attachment in Vibrio cholerae.
Biofilm formation by Vibrio cholerae facilitates environmental persistence, and hyperinfectivity within the host. Biofilm formation is regulated by 3',5'-cyclic diguanylate (c-di-GMP) and requires production of the type IV mannose-sensitive hemagglutinin (MSHA) pilus. Here, we show that the MSHA pilus is a dynamic extendable and retractable system, and its activity is directly controlled by c-di-GMP. The interaction between c-di-GMP and the ATPase MshE promotes pilus extension, whereas low levels of c-di-GMP correlate with enhanced retraction. Loss of retraction facilitated by the ATPase PilT increases near-surface roaming motility, and impairs initial surface attachment. However, prolonged retraction upon surface attachment results in reduced MSHA-mediated surface anchoring and increased levels of detachment. Our results indicate that c-di-GMP directly controls MshE activity, thus regulating MSHA pilus extension and retraction dynamics, and modulating V. cholerae surface attachment and colonization
Lattice dynamical analogies and differences between SrTiO3 and EuTiO3 revealed by phonon-dispersion relations and double-well potentials
A comparative analysis of the structural phase transitions of EuTiO3 and
SrTiO3 (at TS = 282 and 105 K, respectively) is made on the basis of
phonon-dispersion and density functional calculations. The phase transition of
EuTiO3 is predicted to arise from the softening of a transverse acoustic
zone-boundary mode caused by the rotations of the TiO6 octahedra, as also found
for the phase transition of SrTiO3. While the temperature dependence of the
soft mode is similar in both compounds, their elastic properties differ
drastically due to a large difference in the double-well potentials associated
with the soft zone boundary-acoustic mode.Comment: 16 pages, 6 figure
Identification of differentially expressed miRNAs in chicken lung and trachea with avian influenza virus infection by a deep sequencing approach
<p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) play critical roles in a wide spectrum of biological processes and have been shown to be important effectors in the intricate host-pathogen interaction networks. Avian influenza virus (AIV) not only causes significant economic losses in poultry production, but also is of great concern to human health. The objective of this study was to identify miRNAs associated with AIV infections in chickens.</p> <p>Results</p> <p>Total RNAs were isolated from lung and trachea of low pathogenic H5N3 infected and non-infected SPF chickens at 4 days post-infection. A total of 278,398 and 340,726 reads were obtained from lung and trachea, respectively. And 377 miRNAs were detected in lungs and 149 in tracheae from a total of 474 distinct chicken miRNAs available at the miRBase, respectively. Seventy-three and thirty-six miRNAs were differentially expressed between infected and non-infected chickens in lungs and tracheae, respectively. There were more miRNAs highly expressed in non-infected tissues than in infected tissues. Interestingly, some of these differentially expressed miRNAs, including miR-146, have been previously reported to be associated with immune-related signal pathways in mammals.</p> <p>Conclusion</p> <p>To our knowledge, this is the first study on miRNA gene expression in AIV infected chickens using a deep sequencing approach. During AIV infection, many host miRNAs were differentially regulated, supporting the hypothesis that certain miRNAs might be essential in the host-pathogen interactions. Elucidation of the mechanism of these miRNAs on the regulation of host-AIV interaction will lead to the development of new control strategies to prevent or treat AIV infections in poultry.</p
Synergistic Antibacterial Effects of Metallic Nanoparticle Combinations
© The Author(s) 2019.Metallic nanoparticles have unique antimicrobial properties that make them suitable for use within medical and pharmaceutical devices to prevent the spread of infection in healthcare. The use of nanoparticles in healthcare is on the increase with silver being used in many devices. However, not all metallic nanoparticles can target and kill all disease-causing bacteria. To overcome this, a combination of several different metallic nanoparticles were used in this study to compare effects of multiple metallic nanoparticles when in combination than when used singly, as single elemental nanoparticles (SENPs), against two common hospital acquired pathogens (Staphylococcus aureus and Pseudomonas. aeruginosa). Flow cytometry LIVE/DEAD assay was used to determine rates of cell death within a bacterial population when exposed to the nanoparticles. Results were analysed using linear models to compare effectiveness of three different metallic nanoparticles, tungsten carbide (WC), silver (Ag) and copper (Cu), in combination and separately. Results show that when the nanoparticles are placed in combination (NPCs), antimicrobial effects significantly increase than when compared with SENPs (P < 0.01). This study demonstrates that certain metallic nanoparticles can be used in combination to improve the antimicrobial efficiency in destroying morphologically distinct pathogens within the healthcare and pharmaceutical industry.Peer reviewe
Spatial contrast sensitivity in adolescents with autism spectrum disorders
Adolescents with autism spectrum disorders (ASD) and typically developing (TD) controls underwent a rigorous psychophysical assessment that measured contrast sensitivity to seven spatial frequencies (0.5-20 cycles/degree). A contrast sensitivity function (CSF) was then fitted for each participant, from which four measures were obtained: visual acuity, peak spatial frequency, peak contrast sensitivity, and contrast sensitivity at a low spatial frequency. There were no group differences on any of the four CSF measures, indicating no differential spatial frequency processing in ASD. Although it has been suggested that detail-oriented visual perception in individuals with ASD may be a result of differential sensitivities to low versus high spatial frequencies, the current study finds no evidence to support this hypothesis
Recommended from our members
Astrocytes refine cortical connectivity at dendritic spines
During cortical synaptic development, thalamic axons must establish synaptic connections despite the presence of the more abundant intracortical projections. How thalamocortical synapses are formed and maintained in this competitive environment is unknown. Here, we show that astrocyte-secreted protein hevin is required for normal thalamocortical synaptic connectivity in the mouse cortex. Absence of hevin results in a profound, long-lasting reduction in thalamocortical synapses accompanied by a transient increase in intracortical excitatory connections. Three-dimensional reconstructions of cortical neurons from serial section electron microscopy (ssEM) revealed that, during early postnatal development, dendritic spines often receive multiple excitatory inputs. Immuno-EM and confocal analyses revealed that majority of the spines with multiple excitatory contacts (SMECs) receive simultaneous thalamic and cortical inputs. Proportion of SMECs diminishes as the brain develops, but SMECs remain abundant in Hevin-null mice. These findings reveal that, through secretion of hevin, astrocytes control an important developmental synaptic refinement process at dendritic spines. DOI: http://dx.doi.org/10.7554/eLife.04047.00
- …