2 research outputs found

    Real Time FPGA-Based Ethernet Control Communication for Robotic Arm

    No full text
    In this paper, an approach for real time control communication using Ethernet is proposed. The strategy to support this at the network level and include Field Programmable Gate Array (FPGA) implementation on the Ethernet platform for robotic arm. An embedded Ethernet controller is designed to send data packet via Ethernet Local Area Network (LAN). The transferring data also employs Arduino Mega as the medium of communication between FPGA board and the robotic arm. It is used as the receiver to receive data packet from FPGA board with the interface of Arduino Ethernet shield. The control operation on the robotic arm is performed once the desired data packet length is reached to the Arduino Mega. SolidWorks and MATLAB software are used to design the robotic arm and simulate the robotic arm working flexibility in real world respectively. The result of the average data packet delay between FPGA boards is lower in comparison to Arduiono board. The data packet can send successfully in through the network to test the robotic arm

    Real Time FPGA-Based Ethernet Control Communication for Robotic Arm

    No full text
    In this paper, an approach for real time control communication using Ethernet is proposed. The strategy to support this at the network level and include Field Programmable Gate Array (FPGA) implementation on the Ethernet platform for robotic arm. An embedded Ethernet controller is designed to send data packet via Ethernet Local Area Network (LAN). The transferring data also employs Arduino Mega as the medium of communication between FPGA board and the robotic arm. It is used as the receiver to receive data packet from FPGA board with the interface of Arduino Ethernet shield. The control operation on the robotic arm is performed once the desired data packet length is reached to the Arduino Mega. SolidWorks and MATLAB software are used to design the robotic arm and simulate the robotic arm working flexibility in real world respectively. The result of the average data packet delay between FPGA boards is lower in comparison to Arduiono board. The data packet can send successfully in through the network to test the robotic arm
    corecore