2,784 research outputs found

    Correlation and Fluctuation in Multiparticle Production: Some Closing Remarks

    Get PDF
    Some general comments are made on the evolution of this series of workshops and on some features of this particular Workshop without attempting to summarize all the talks presented.Comment: Closing talk at the 11th Workshop on Correlation and Fluctuation in Multiparticle Production, Hangzhou, China, Nov. 21-24, 200

    Correlations at intermediate pTp_T

    Full text link
    Correlations among hadrons in jets produced in heavy-ion collisions are discussed in the framework of the recombination model. The basic correlation at the parton level is among the shower partons arising from kinematical constraint. The resultant correlation between hadrons at intermediate pTp_T is amazingly rich in characteristics.Comment: 10 pages including 12 figures. Talk presented at the MIT Workshop on Correlations and Fluctuations in Relativistic Nuclear Collisions, April 200

    Quark-hadron phase transition with surface fluctuation

    Get PDF
    The effect of surface fluctuation on the observables of quark-hadron phase transition is studied. The Ginzburg-Landau formalism is extended by the inclusion of an extra term in the free energy that depends on the vertical displacements from a flat surface. The probability that a bin has a particular net displacement is determined by lattice simulation, where the physics input is color confinement. The surface fluctuation from bin to bin is related to multiplicity fluctuation, which in turn is measured by the factorial moments. It is found that both the F-scaling behavior and the scaling exponent are essentially unaffected by the inclusion of surface fluctuation.Comment: 9 pages, LaTex, 7 figures in a single postscript file, submitted to Phys. Rev.

    Universal behavior of multiplicity differences in quark-hadron phase transition

    Full text link
    The scaling behavior of factorial moments of the differences in multiplicities between well separated bins in heavy-ion collisions is proposed as a probe of quark-hadron phase transition. The method takes into account some of the physical features of nuclear collisions that cause some difficulty in the application of the usual method. It is shown in the Ginzburg-Landau theory that a numerical value Îł\gamma of the scaling exponent can be determined independent of the parameters in the problem. The universality of Îł\gamma characterizes quark-hadron phase transition, and can be tested directly by appropriately analyzed data.Comment: 15 pages, including 4 figures (in epsf file), Latex, submitted to Phys. Rev.

    Critical Behavior of Hadronic Fluctuations and the Effect of Final-State Randomization

    Get PDF
    The critical behaviors of quark-hadron phase transition are explored by use of the Ising model adapted for hadron production. Various measures involving the fluctuations of the produced hadrons in bins of various sizes are examined with the aim of quantifying the clustering properties that are universal features of all critical phenomena. Some of the measures involve wavelet analysis. Two of the measures are found to exhibit the canonical power-law behavior near the critical temperature. The effect of final-state randomization is studied by requiring the produced particles to take random walks in the transverse plane. It is demonstrated that for the measures considered the dependence on the randomization process is weak. Since temperature is not a directly measurable variable, the average hadronic density of a portion of each event is used as the control variable that is measurable. The event-to-event fluctuations are taken into account in the study of the dependence of the chosen measures on that control variable. Phenomenologically verifiable critical behaviors are found and are proposed for use as a signature of quark-hadron phase transition in relativistic heavy-ion collisions.Comment: 17 pages (Latex) + 24 figures (ps file), submitted to Phys. Rev.

    Transferable Rights of Recreational Fishery: An Application to Red Snapper Fishery in the Gulf of Mexico

    Get PDF
    Transferable rights (TRs) programs are being increasingly considered in fisheries to overcome current overfishing situation. This paper will focus on developing a conceptual foundation, investigating advantages of the TRs program in fishery management, and answering critical issues to implement recreational TRs programs. Implication is to the Gulf of Mexico red snapper fishery.Transferable Rights, Individual Transferable Quota, Recreational Fishery, Resource /Energy Economics and Policy, Q22,

    Cluster Production in Quark-Hadron Phase Transition

    Full text link
    The problem of cluster formation and growth in first-order quark-hadron phase transition in heavy-ion collisions is considered. Behaving as Brownian particles, the clusters carry out random walks and can encounter one another, leading to coalescence and breakup. A simulation of the process in cellular automaton suggests the possibility of a scaling distribution in the cluster sizes. The experimental determination of the cluster-size distribution is urged as a means to find a clear signature of phase transition.Comment: 12 pages + 1 figure. Report # OITS-517. To be published in Phys. Rev. Lett. 71, xxx (1994

    Novel Scaling Behavior for the Multiplicity Distribution under Second-Order Quark-Hadron Phase Transition

    Full text link
    Deviation of the multiplicity distribution PqP_q in small bin from its Poisson counterpart pqp_q is studied within the Ginzburg-Landau description for second-order quark-hadron phase transition. Dynamical factor dq≡Pq/pqd_q\equiv P_q/p_q for the distribution and ratio Dq≡dq/d1D_q\equiv d_q/d_1 are defined, and novel scaling behaviors between DqD_q are found which can be used to detect the formation of quark-gluon plasma. The study of dqd_q and DqD_q is also very interesting for other multiparticle production processes without phase transition.Comment: 4 pages in revtex, 5 figures in eps format, will be appeared in Phys. Rev.

    Thermodynamics of Mesoscopic Vortex Systems in 1+1 Dimensions

    Full text link
    The thermodynamics of a disordered planar vortex array is studied numerically using a new polynomial algorithm which circumvents slow glassy dynamics. Close to the glass transition, the anomalous vortex displacement is found to agree well with the prediction of the renormalization-group theory. Interesting behaviors such as the universal statistics of magnetic susceptibility variations are observed in both the dense and dilute regimes of this mesoscopic vortex system.Comment: 4 pages, REVTEX, 6 figures included. Comments and suggestions can be sent to [email protected]

    Concurrent Magnetic and Metal-Insulator Transitions in (Eu,Sm)B_6 Single Crystals

    Get PDF
    The effects of magnetic doping on a EuB_6 single crystal were investigated based on magnetic and transport measurements. A modest 5% Sm substitution for Eu changes the magnetic and transport properties dramatically and gives rise to concurrent antiferromagnetic and metal-insulator transitions (MIT) from ferromagnetic MIT for EuB6. Magnetic doping simultaneously changes the itinerant carrier density and the magnetic interactions. We discuss the origin of the concurrent magnetic MIT in (Eu,Sm)B_6.Comment: 13 pages, 3 figures, final version to appear in Appl. Phys. Lett
    • …
    corecore