7,089 research outputs found

    Suppression of backward scattering of Dirac fermions in iron pnictides Ba(Fe1−x_{1-x}Rux_xAs)2_2

    Full text link
    We report electronic transport of Dirac cones when Fe is replaced by Ru, which has an isoelectronic electron configuration to Fe, using single crystals of Ba(Fe1−x_{1-x}Rux_xAs)2_2. The electronic transport of parabolic bands is shown to be suppressed by scattering due to the crystal lattice distortion and the impurity effect of Ru, while that of the Dirac cone is not significantly reduced due to the intrinsic character of Dirac cones. It is clearly shown from magnetoresistance and Hall coefficient measurements that the inverse of average mobility, proportional to cyclotron effective mass, develops as the square root of the carrier number (n) of the Dirac cones. This is the unique character of the Dirac cone linear dispersion relationship. Scattering of Ru on the Dirac cones is discussed in terms of the estimated mean free path using experimental parameters.Comment: 6 pages, 3 figures, To be published in Phys. Rev.

    Emotions Studied by Imaging of the Human Brain:The Somatic and Emotional Motor Systems

    Get PDF
    The brain has only two goals, survival of the individual and survival of the species. One of the most important tools to accomplish these goals is the motor system, which includes the somatic or voluntary motor system and the emotional motor system (EMS). The EMS is equally or even more important than the somatic motor system. In humans, the cortex cerebri with the corticospinal tract plays the most important role in the somatic motor system, while in the EMS, the periaqueductal gray (PAG) plays a central role controlling nociception, cardiovascular changes, respiration, micturition, parturition, defecation, vocalization, vomiting, coughing, sneezing, mating behavior, pupil dilation, and defensive posture.</p

    Modelling and Simulation of Handover in Light Fidelity (Li-Fi) Network

    Full text link
    © 2018 IEEE. The demand of a faster and more secure wireless communication system leads to the development of a new and innovated network in future. Light Fidelity (Li-Fi) is being researched to provide a better wireless network communication. In this communication technology, light from Light Emitting Diodes (LEDs) has been used for data transmission. The purpose of this research work is to investigate the performance of handover algorithms in a Li-Fi network. Two handover algorithms are Closest Access Point (AP) (CAP) and Maximum Channel Gain (MCG). MATLAB simulation results are presented to evaluate those two types of handover algorithms and to show the impacts of UE's rotation and movement on handover performance

    Partner orbits and action differences on compact factors of the hyperbolic plane. Part I: Sieber-Richter pairs

    Full text link
    Physicists have argued that periodic orbit bunching leads to universal spectral fluctuations for chaotic quantum systems. To establish a more detailed mathematical understanding of this fact, it is first necessary to look more closely at the classical side of the problem and determine orbit pairs consisting of orbits which have similar actions. In this paper we specialize to the geodesic flow on compact factors of the hyperbolic plane as a classical chaotic system. We prove the existence of a periodic partner orbit for a given periodic orbit which has a small-angle self-crossing in configuration space which is a `2-encounter'; such configurations are called `Sieber-Richter pairs' in the physics literature. Furthermore, we derive an estimate for the action difference of the partners. In the second part of this paper [13], an inductive argument is provided to deal with higher-order encounters.Comment: to appear on Nonlinearit

    Electron and hole Dirac cone states in-pairs in Ba(FeAs)2_2 confirmed by magnetoresistance

    Full text link
    The quantum transport of Dirac cone states in the iron pnictide Ba(FeAs)2_2 with a d-\,multiband system is studied by using single crystal samples. The transverse magnetoresistance develops linearly against magnetic field at low temperatures. The transport phenomena are interpreted in terms of the 0th^{th} Landau level by applying the theory predicted by Abrikosov. The results of the semiclassical analyses of a two carrier system under low magnetic field limit show that both electron and hole reside as the high mobility states, being indicative to the fact that both electron- and hole Dirac cone states should be taken into account in pairs for having the real interpretation of low temperature electronic states in iron pnictides, being in contrast to the previous reports.Comment: 4 pages, 2 figure
    • …
    corecore