13 research outputs found

    A Two-Step Certified Reduced Basis Method

    Get PDF
    In this paper we introduce a two-step Certified Reduced Basis (RB) method. In the first step we construct from an expensive finite element “truth” discretization of dimension N an intermediate RB model of dimension Nâ‰ȘN . In the second step we construct from this intermediate RB model a derived RB (DRB) model of dimension M≀N. The construction of the DRB model is effected at cost O(N) and in particular at cost independent of N ; subsequent evaluation of the DRB model may then be effected at cost O(M) . The DRB model comprises both the DRB output and a rigorous a posteriori error bound for the error in the DRB output with respect to the truth discretization. The new approach is of particular interest in two contexts: focus calculations and hp-RB approximations. In the former the new approach serves to reduce online cost, Mâ‰ȘN: the DRB model is restricted to a slice or subregion of a larger parameter domain associated with the intermediate RB model. In the latter the new approach enlarges the class of problems amenable to hp-RB treatment by a significant reduction in offline (precomputation) cost: in the development of the hp parameter domain partition and associated “local” (now derived) RB models the finite element truth is replaced by the intermediate RB model. We present numerical results to illustrate the new approach.United States. Air Force Office of Scientific Research (AFOSR Grant number FA9550-07-1-0425)United States. Department of Defense. Office of the Secretary of Defense (OSD/AFOSR Grant number FA9550-09-1-0613)Norwegian University of Science and Technolog

    Heat flow and calculus on metric measure spaces with Ricci curvature bounded below - the compact case

    Get PDF
    We provide a quick overview of various calculus tools and of the main results concerning the heat flow on compact metric measure spaces, with applications to spaces with lower Ricci curvature bounds. Topics include the Hopf-Lax semigroup and the Hamilton-Jacobi equation in metric spaces, a new approach to differentiation and to the theory of Sobolev spaces over metric measure spaces, the equivalence of the L^2-gradient flow of a suitably defined "Dirichlet energy" and the Wasserstein gradient flow of the relative entropy functional, a metric version of Brenier's Theorem, and a new (stronger) definition of Ricci curvature bound from below for metric measure spaces. This new notion is stable w.r.t. measured Gromov-Hausdorff convergence and it is strictly connected with the linearity of the heat flow.Comment: To the memory of Enrico Magenes, whose exemplar life, research and teaching shaped generations of mathematician

    Generalized reduced basis methods and n-width estimates for the approximation of the solution manifold of parametric PDEs

    Get PDF
    The set of solutions of a parameter-dependent linear partial differential equation with smooth coefficients typically forms a compact manifold in a Hilbert space. In this paper we review the generalized reduced basis method as a fast computational tool for the uniform approximation of the solution manifold. We focus on operators showing an affine parametric dependence, expressed as a linear combination of parameter-independent operators through some smooth, parameter-dependent scalar functions. In the case that the parameter-dependent operator has a dominant term in its affine expansion, one can prove the existence of exponentially convergent uniform approximation spaces for the entire solution manifold. These spaces can be constructed without any assumptions on the parametric regularity of the manifold -- only spatial regularity of the solutions is required. The exponential convergence rate is then inherited by the generalized reduced basis method. We provide a numerical example related to parametrized elliptic equations confirming the predicted convergence rate

    Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation

    Get PDF
    In this paper we present rigorous a posteriori L 2 error bounds for reduced basis approximations of the unsteady viscous Burgers’ equation in one space dimension. The a posteriori error estimator, derived from standard analysis of the error-residual equation, comprises two key ingredients—both of which admit efficient Offline-Online treatment: the first is a sum over timesteps of the square of the dual norm of the residual; the second is an accurate upper bound (computed by the Successive Constraint Method) for the exponential-in-time stability factor. These error bounds serve both Offline for construction of the reduced basis space by a new POD-Greedy procedure and Online for verification of fidelity. The a posteriori error bounds are practicable for final times (measured in convective units) T≈O(1) and Reynolds numbers Îœ[superscript −1]≫1; we present numerical results for a (stationary) steepening front for T=2 and 1≀Μ[superscript −1]≀200.United States. Air Force Office of Scientific Research (AFOSR Grant FA9550-05-1-0114)United States. Air Force Office of Scientific Research (AFOSR Grant FA-9550-07-1-0425)Singapore-MIT Alliance for Research and Technolog

    Output Error Bounds for the Dirichlet-Neumann Reduced Basis Method

    No full text

    Reduced Basis Approximation for Shape Optimization in Thermal Flows with a Parametrized Polynomial Geometric Map

    Get PDF
    The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2009), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of the papers will provide the reader with a snapshot of state-of-the-art and help initiate new research directions through the extensive bibliograph
    corecore