3 research outputs found

    Variability in an effector gene promoter of a necrotrophic fungal pathogen dictates epistasis and effector-triggered susceptibility in wheat

    Get PDF
    The fungus Parastagonospora nodorum uses proteinaceous necrotrophic effectors (NEs) to induce tissue necrosis on wheat leaves during infection, leading to the symptoms of septoria nodorum blotch (SNB). The NEs Tox1 and Tox3 induce necrosis on wheat possessing the dominant susceptibility genes Snn1 and Snn3B1/Snn3D1, respectively. We previously observed that Tox1 is epistatic to the expression of Tox3 and a quantitative trait locus (QTL) on chromosome 2A that contributes to SNB resistance/susceptibility. The expression of Tox1 is significantly higher in the Australian strain SN15 compared to the American strain SN4. Inspection of the Tox1 promoter region revealed a 401 bp promoter genetic element in SN4 positioned 267 bp upstream of the start codon that is absent in SN15, called PE401. Analysis of the world-wide P. nodorum population revealed that a high proportion of Northern Hemisphere isolates possess PE401 whereas the opposite was observed in representative P. nodorum isolates from Australia and South Africa. The presence of PE401 removed the epistatic effect of Tox1 on the contribution of the SNB 2A QTL but not Tox3. PE401 was introduced into the Tox1 promoter regulatory region in SN15 to test for direct regulatory roles. Tox1 expression was markedly reduced in the presence of PE401. This suggests a repressor molecule(s) binds PE401 and inhibits Tox1 transcription. Infection assays also demonstrated that P. nodorum which lacks PE401 is more pathogenic on Snn1 wheat varieties than P. nodorum carrying PE401. An infection competition assay between P. nodorum isogenic strains with and without PE401 indicated that the higher Tox1-expressing strain rescued the reduced virulence of the lower Tox1-expressing strain on Snn1 wheat. Our study demonstrated that Tox1 exhibits both ‘selfish’ and ‘altruistic’ characteristics. This offers an insight into a complex NE-NE interaction that is occurring within the P. nodorum population. The importance of PE401 in breeding for SNB resistance in wheat is discussed

    Learner autonomy in foreign language policies in Vietnamese universities: an exploration of teacher agency from a sociocultural perspective

    No full text
    Learner autonomy (LA) is generally accepted as an important goal, either explicit or implicit, in language education policies across polities. Fostering LA in educational settings primarily depends on the role of teachers in enacting macro-level policies at the micro level. While various top-down and bottom-up frameworks for language policy implementation have been proposed, little attention has been given to the relationships between the macro and the micro contexts in relation to the policy and practice of LA. This paper, which is part of a larger project, examines these relationships to discuss their implications for fostering LA in the Vietnamese higher education context. It draws on data from interviews and classroom observations with university English teachers who are conceived as policy actors at the micro level. The findings suggest that while the translation of macro LA policies to the micro level can be seen as being characterised by policy dumping, LA development in the English language classroom is also reflective of micro-level actors' exercise of agency. This agency is motivated by teachers' sense of responsibility towards their students and their academic wellbeing. It is argued that the voices of these policy actors should be granted more reception and credibility in negotiating LA in macro-micro policy processes

    Impact of (intestinal) LAL deficiency on lipid metabolism and macrophage infiltration

    No full text
    Objective: To date, the only enzyme known to be responsible for the hydrolysis of cholesteryl esters and triacylglycerols in the lysosome at acidic pH is lysosomal acid lipase (LAL). Lipid malabsorption in the small intestine (SI), accompanied by macrophage infiltration, is one of the most common pathological features of LAL deficiency. However, the exact role of LAL in intestinal lipid metabolism is still unknown. Methods: We collected three parts of the SI (duodenum, jejunum, ileum) from mice with a global (LAL KO) or intestine-specific deletion of LAL (iLAL KO) and corresponding controls. Results: We observed infiltration of lipid-associated macrophages into the lamina propria, where neutral lipids accumulate massively in the SI of LAL KO mice. In addition, LAL KO mice absorb less dietary lipids but have accelerated basolateral lipid uptake, secrete fewer chylomicrons, and have increased fecal lipid loss. Inflammatory markers and genes involved in lipid metabolism were overexpressed in the duodenum of old but not in younger LAL KO mice. Despite the significant reduction of LAL activity in enterocytes of enterocyte-specific (iLAL) KO mice, villous morphology, intestinal lipid concentrations, expression of lipid transporters and inflammatory genes, as well as lipoprotein secretion were comparable to control mice. Conclusions: We conclude that loss of LAL only in enterocytes is insufficient to cause lipid deposition in the SI, suggesting that infiltrating macrophages are the key players in this process
    corecore