226 research outputs found

    Denoising Diffusion Medical Models

    Full text link
    In this study, we introduce a generative model that can synthesize a large number of radiographical image/label pairs, and thus is asymptotically favorable to downstream activities such as segmentation in bio-medical image analysis. Denoising Diffusion Medical Model (DDMM), the proposed technique, can create realistic X-ray images and associated segmentations on a small number of annotated datasets as well as other massive unlabeled datasets with no supervision. Radiograph/segmentation pairs are generated jointly by the DDMM sampling process in probabilistic mode. As a result, a vanilla UNet that uses this data augmentation for segmentation task outperforms other similarly data-centric approaches.Comment: Accepted to IEEE ISBI 202

    A Rigorous Framework for the Mean Field Limit of Multilayer Neural Networks

    Full text link
    We develop a mathematically rigorous framework for multilayer neural networks in the mean field regime. As the network's width increases, the network's learning trajectory is shown to be well captured by a meaningful and dynamically nonlinear limit (the \textit{mean field} limit), which is characterized by a system of ODEs. Our framework applies to a broad range of network architectures, learning dynamics and network initializations. Central to the framework is the new idea of a \textit{neuronal embedding}, which comprises of a non-evolving probability space that allows to embed neural networks of arbitrary widths. We demonstrate two applications of our framework. Firstly the framework gives a principled way to study the simplifying effects that independent and identically distributed initializations have on the mean field limit. Secondly we prove a global convergence guarantee for two-layer and three-layer networks. Unlike previous works that rely on convexity, our result requires a certain universal approximation property, which is a distinctive feature of infinite-width neural networks. To the best of our knowledge, this is the first time global convergence is established for neural networks of more than two layers in the mean field regime

    COVID-19: Experience from Vietnam Medical Students

    Get PDF

    Vietnam’s healthcare system decentralization : how well does it respond to global health crises such as COVID-19 pandemic?

    Get PDF
    This article discussed Vietnam’s ongoing efforts to decentralize the health system and its fitness to respond to global health crises as presented through the Covid-19 pandemic. We used a general review and expert’s perspective to explore the topic. We found that the healthcare system in Vietnam continued to decentralize from a pyramid to a wheel model. This system shifts away from a stratified technical hierarchy of higher- and lower-level health units (pyramid model) to a system in which quality healthcare is equally expected among all health units (wheel model). This decentralization has delivered more quality healthcare facilities, greater freedom for patients to choose services at any level, a more competitive environment among hospitals to improve quality, and reductions in excess capacity burden at higher levels. It has also enabled the transformation from a patient-based traditional healthcare model into a patient-centered care system. However, this decentralization takes time and requires long-term political, financial commitment, and a working partnership among key stakeholders. This perspective provides Vietnam’s experience of the decentralization of the healthcare system that may be consider as a useful example for other countries to strategically think of and to shape their future system within their own socio-political context. Copyright © 2020 Via Medic

    A Deep Learning Architecture with Spatio-Temporal Focusing for Detecting Respiratory Anomalies

    Full text link
    This paper presents a deep learning system applied for detecting anomalies from respiratory sound recordings. Our system initially performs audio feature extraction using Continuous Wavelet transformation. This transformation converts the respiratory sound input into a two-dimensional spectrogram where both spectral and temporal features are presented. Then, our proposed deep learning architecture inspired by the Inception-residual-based backbone performs the spatial-temporal focusing and multi-head attention mechanism to classify respiratory anomalies. In this work, we evaluate our proposed models on the benchmark SPRSound (The Open-Source SJTU Paediatric Respiratory Sound) database proposed by the IEEE BioCAS 2023 challenge. As regards the Score computed by an average between the average score and harmonic score, our robust system has achieved Top-1 performance with Scores of 0.810, 0.667, 0.744, and 0.608 in Tasks 1-1, 1-2, 2-1, and 2-2, respectively.Comment: arXiv admin note: text overlap with arXiv:2303.0410

    An Inception-Residual-Based Architecture with Multi-Objective Loss for Detecting Respiratory Anomalies

    Full text link
    This paper presents a deep learning system applied for detecting anomalies from respiratory sound recordings. Initially, our system begins with audio feature extraction using Gammatone and Continuous Wavelet transformation. This step aims to transform the respiratory sound input into a two-dimensional spectrogram where both spectral and temporal features are presented. Then, our proposed system integrates Inception-residual-based backbone models combined with multi-head attention and multi-objective loss to classify respiratory anomalies. Instead of applying a simple concatenation approach by combining results from various spectrograms, we propose a Linear combination, which has the ability to regulate equally the contribution of each individual spectrogram throughout the training process. To evaluate the performance, we conducted experiments over the benchmark dataset of SPRSound (The Open-Source SJTU Paediatric Respiratory Sound) proposed by the IEEE BioCAS 2022 challenge. As regards the Score computed by an average between the average score and harmonic score, our proposed system gained significant improvements of 9.7%, 15.8%, 17.8%, and 16.1% in Task 1-1, Task 1-2, Task 2-1, and Task 2-2, respectively, compared to the challenge baseline system. Notably, we achieved the Top-1 performance in Task 2-1 and Task 2-2 with the highest Score of 74.5% and 53.9%, respectively

    TwinLiteNet: An Efficient and Lightweight Model for Driveable Area and Lane Segmentation in Self-Driving Cars

    Full text link
    Semantic segmentation is a common task in autonomous driving to understand the surrounding environment. Driveable Area Segmentation and Lane Detection are particularly important for safe and efficient navigation on the road. However, original semantic segmentation models are computationally expensive and require high-end hardware, which is not feasible for embedded systems in autonomous vehicles. This paper proposes a lightweight model for the driveable area and lane line segmentation. TwinLiteNet is designed cheaply but achieves accurate and efficient segmentation results. We evaluate TwinLiteNet on the BDD100K dataset and compare it with modern models. Experimental results show that our TwinLiteNet performs similarly to existing approaches, requiring significantly fewer computational resources. Specifically, TwinLiteNet achieves a mIoU score of 91.3% for the Drivable Area task and 31.08% IoU for the Lane Detection task with only 0.4 million parameters and achieves 415 FPS on GPU RTX A5000. Furthermore, TwinLiteNet can run in real-time on embedded devices with limited computing power, especially since it achieves 60FPS on Jetson Xavier NX, making it an ideal solution for self-driving vehicles. Code is available: url{https://github.com/chequanghuy/TwinLiteNet}.Comment: Accepted by MAPR 202
    • …
    corecore