17 research outputs found

    Metal–organic frameworks as potential drug carriers

    Get PDF
    Nanoparticle-based therapeutics have received increasing attention, as these systems can alleviate many drawbacks of conventional therapy. Metal-organic frameworks (MOFs), a new class of hybrid materials composed of metal ions and organic bridging ligands, have emerged as a promising platform for drug delivery, owing to their high drug loadings, biodegradability, and versatile functionality. The bulk MOF materials can absorb and release large amounts of therapeutics including ibuprofen, procainamide, and nitric oxide. Scale-down of MOFs to the nano-regime yields nanoscale metal-organic frameworks (NMOFs) which are more applicable as delivery vehicles, such as selective delivery of cisplatin prodrugs. Although progress has been made in utilizing NMOFs for drug delivery, many improvements must occur before they can become viable nanotherapeutics

    Silica-based nanoprobes for biomedical imaging and theranostic applications

    Get PDF
    Nanoparticle-based contrast agents are attracting a great deal of attention for various biomedical imaging and theranostic applications. Compared to conventional contrast agents, nanoparticles possess several potential advantages to improve in vivo detection and to enhance targeting efficiency. Silica-based nanoprobes can be engineered to achieve longer blood circulation times, specific clearance pathways, and multivalent binding. In this tutorial review, we summarize the latest progress on designing silica-based nanoprobes for imaging and theranostic applications. The synthesis of both solid silica and mesoporous silica nanoparticles is described, along with different approaches used for surface functionalization. Special emphasis is placed on the application of silica-based nanoprobes in optical, magnetic resonance, and multimodal imaging. The latest breakthroughs in the applications of silica nanoparticles as theranostic agents are also highlighted

    Lipid-coated nanoscale coordination polymers for targeted cisplatin delivery

    Get PDF
    Nanoscale coordination polymers (NCPs) containing a Pt(IV) cisplatin prodrug, disuccinatocisplatin, were formed by a surfactant-templated synthesis and were shown to have a prodrug loading of 8.2 wt% and a diameter of ~133 nm by dynamic light scattering. These NCPs were stabilized by coating with a DOPC/cholesterol/DSPE-Peg2K lipid layer; a release profile in phosphate buffered saline showed an initial drug release of ~25% within the first hour and no more release observed up to 192 h. The NCP was rendered target-specific for sigma receptors by addition of an AA-DSPE-Peg2K conjugate (AA = anisamide) in the lipid formulation. The AA-containing NCP showed a statistically significant decrease in IC50 (inhibitory concentration, 50%) compared to the non-targeted NCP. Enhanced uptake of the AA-containing NCP was further supported by confocal microscopy and competitive binding assays

    Lipid-coated nanoscale coordination polymers for targeted delivery of antifolates to cancer cells

    Get PDF
    Nanoscale coordination polymers (NCPs) have been demonstrated as an interesting platform for drug delivery, as they possess many advantages over small-molecule chemotherapeutics, such as high payloads, lower systemic toxicity, tunability, and enhanced tumor uptake. Existing formulations for the delivery of methotrexate (MTX), an antifolate cancer drug, have very low drug loadings. Herein, we report the incorporation of MTX as a building block in an NCP formulation with exceptionally high drug loadings (up to 79.1 wt%) and the selective delivery of the NCP to cancer cells. Encapsulation of the NCP in a functionalized lipid bilayer allows for targeted delivery and controlled release to cancer cells. A phosphor can be doped into the NCPs for monitoring particle uptake by optical imaging. The lipid-coated and anisamide-targeted NCPs have superior in vitro efficacy against acute lymphoblastic leukemia cells when compared to free drug

    Biodegradable Polysilsesquioxane Nanoparticles as Efficient Contrast Agents for Magnetic Resonance Imaging

    Get PDF
    Polysilsesquioxane (PSQ) nanoparticles are crosslinked homopolymers formed by condensation of functionalized trialkoxysilanes, and provide an interesting platform for developing biologically and biomedically relevant nanomaterials. In this work, the design and synthesis of biodegradable PSQ particles with extremely high payloads of paramagnetic Gd(III) centers is explored, for use as efficient contrast agents for magnetic resonance imaging (MRI). Two new bis(trialkoxysilyl) derivatives of Gd(III) diethylenetriamine pentaacetate (Gd-DTPA) containing disulfide linkages are synthesized and used to form biodegradable Gd-PSQ particles by base-catalyzed condensation reactions in reverse microemulsions. The Gd-PSQ particles, PSQ-1 and PSQ-2, carry 53.8 wt% and 49.3 wt% of Gd-DTPA derivatives, respectively. In addition, the surface carboxy groups on the PSQ-2 particles can be modified with polyethylene glycol (PEG) and the anisamide (AA) ligand to enhance biocompatibility and cell uptake, respectively. The Gd-PSQ particles are readily degradable to release the constituent Gd(III) chelates in the presence of endogenous reducing agents such as cysteine and glutathione. The MR relaxivities of the Gd-PSQ particles are determined using a 3T MR scanner, with r1 values ranging from 5.9 to 17.8 mMs−1 on a per-Gd basis. Finally, the high sensitivity of the Gd-PSQ particles as T1-weighted MR contrast agents is demonstrated with in vitro MR imaging of human lung and pancreatic cancer cells. The enhanced efficiency of the anisamide-functionalized PSQ-2 particles as a contrast agent is corroborated by both confocal laser scanning microscopy imaging and ICP-MS analysis of Gd content in vitro

    Coercing bisphosphonates to kill cancer cells with nanoscale coordination polymers

    Get PDF
    Nanoscale coordination polymers containing exceptionally high loadings of bisphosphonates were coated with single lipid bilayers to control the drug release kinetics and functionalized with a targeting ligand to endow cell-targeting capability, leading to much enhanced cytotoxicity against human lung and pancreatic cancer cells

    Multifunctional Mesoporous Silica Nanospheres with Cleavable Gd(III) Chelates as MRI Contrast Agents: Synthesis, Characterization, Target-Specificity, and Renal Clearance

    Get PDF
    Mesoporous silica nanospheres (MSNs) are a promising material for magnetic resonance imaging (MRI) contrast agents. In this paper multifunctional MSNs with cleavable Gd(III) chelates are synthesized and characterized, and their applicability as MRI contrast agents is demonstrated both in vitro and in vivo. The MSNs contain Gd(III) chelates that are covalently linked via a redox-responsive disulfide moiety. The MSNs are further functionalized with polyethylene glycol (PEG) and an anisamide ligand to improve their biocompatibility and target specificity. The effectiveness of MSNs as an MRI imaging contrast agent and their targeting ability are successfully demonstrated in vitro using human colon adenocarcinoma and pancreatic cancer cells. Finally, the capability of this platform as an in vivo MRI contrast agent is tested using a 3T scanner. The Gd(III) chelate was quickly cleaved by the blood pool thiols and eliminated through the renal excretion pathway. Further tuning of the Gd(III) chelate release kinetics is needed before the MSN system can be used as target-specific MRI contrast agents in vivo

    Polysilsesquioxane nanoparticles for triggered release of cisplatin and effective cancer chemoradiotherapy

    Get PDF
    Chemoradiotherapy is a well-established treatment paradigm in oncology. There has been strong interest in identifying strategies to further improve its therapeutic index. An innovative strategy is to utilize nanoparticle (NP)chemotherapeutics in chemoradiation. Since the most commonly utilized chemotherapeutic with radiotherapy is cisplatin, the development of a NP cisplatin for chemoradiotherapy has the highest potential impact on this treatment. Here, we report the development of a NP comprised of polysilsesquioxane (PSQ) polymer crosslinked by a cisplatin prodrug (Cisplatin-PSQ) and its utilization in chemoradiotherapy using non-small cell lung cancer as a disease model. Cisplatin-PSQ NP has an exceptionally high loading of cisplatin. Cisplatin-PSQ NPs were evaluated in chemoradiotherapy in vitro and in vivo. They demonstrated significantly higher therapeutic efficacy when compared to cisplatin. These results suggest that the Cisplatin-PSQ NP holds potential for clinical translation in chemoradiotherapy

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects
    corecore