35 research outputs found

    Ongoing evolution of submarine canyon rockwalls; examples from the Whittard Canyon, Celtic Margin (NE Atlantic)

    Get PDF
    During the CODEMAP 2015 research expedition to the Whittard Canyon, Celtic Margin (NE Atlantic), a Remotely Operated Vehicle (ROV) gathered High Definition video footage of the canyon rockwalls at depths of approximately 412–4184 m below sea level. This dataset was supplemented by predominantly carbonate rock samples collected during the dives, which were subsequently tested for key physical property characteristics in a geotechnical laboratory. The high-resolution video footage revealed small-scale rockwall slope processes that would not have been visible if shipboard geophysical equipment was solely relied upon during the survey. Of particular interest was the apparent spalling failure of mudstone and chalk rockwalls, with fresh superficial “flaking” scars and an absence of sessile fauna possibly suggesting relatively recent mass-wasting activity. Extensive talus slopes, often consisting of coarse gravel, cobble and occasionally boulder-sized clasts, were observed at the foot of slopes impacted by spalling failures; this debris was rarely colonised by biological communities, which could be an indicator of frequent rockfall events. Bio-erosion was also noted on many of the walls prone to this form of rock slope failure (RSF). As in subaerial equivalents, internal fracture networks appear to control the prevalence of RSF and the geometries of blocks, often resulting in cubic and tabular blocks (0.2–1.0 m scale) of bedrock toppling or sliding out of the cliff face. Tensile strength parameters of carbonate rock samples were determined and these may affect the mass wasting processes observed within the canyon. It was found that carbonate samples which appeared to have a higher mud content, and reduced porosity, produced significantly higher tensile strength values. It is proposed that these stronger, “muddy” carbonate units form the overhanging ledges that often provide an ideal setting for sessile species, such as Acesta excavata clams, to colonise whereas the weaker “pure” carbonate units are more easily eroded and therefore form the undercutting, receding sections of the rockwall

    The Whittard Canyon - A case study of submarine canyon processes

    Get PDF
    Submarine canyons are large geomorphological features that incise continental shelves and slopes around the world. They are often suggested to be biodiversity and biomass hotspots, although there is no consensus about this in the literature. Nevertheless, many canyons do host diverse faunal communities but owing to our lack of understanding of the processes shaping and driving this diversity, appropriate management strategies have yet to be developed. Here, we integrate all the current knowledge of one single system, the Whittard Canyon (Celtic Margin, NE Atlantic), including the latest research on its geology, sedimentology, geomorphology, oceanography, ecology, and biodiversity in order to address this issue. The Whittard Canyon is an active system in terms of sediment transport. The net suspended sediment transport is mainly up-canyon causing sedimentary overflow in some upper canyon areas. Occasionally sediment gravity flow events do occur, some possibly the result of anthropogenic activity. However, the role of these intermittent gravity flows in transferring labile organic matter to the deeper regions of the canyon appears to be limited. More likely, any labile organic matter flushed downslope in this way becomes strongly diluted with bulk material and is therefore of little food value for benthic fauna. Instead, the fresh organic matter found in the Whittard Channel mainly arrives through vertical deposition and lateral transport of phytoplankton blooms that occur in the area during spring and summer. The response of the Whittard Canyon fauna to these processes is different in different groups. Foraminiferal abundances are higher in the upper parts of the canyon and on the slope than in the lower canyon. Meiofaunal abundances in the upper and middle part of the canyon are higher than on adjacent slopes, but lower in the deepest part. Mega- and macrofauna abundances are higher in the canyon compared with the adjacent slope and are higher in the eastern than the western branch. These faunal patterns reflect the fact that the Whittard Canyon encompasses considerable environmental heterogeneity, related to a combination of organic matter trapping, current regimes (due to focused internal tides) and different substrates. We conclude that coordinated observations of processes driving faunal patterns are needed at a fine scale in order to understand the functioning of communities in this and other submarine canyons

    New approaches to high-resolution mapping of marine vertical structures

    Get PDF
    Vertical walls in marine environments can harbour high biodiversity and provide natural protection from bottom-trawling activities. However, traditional mapping techniques are usually restricted to down-looking approaches which cannot adequately replicate their 3D structure. We combined sideways-looking multibeam echosounder (MBES) data from an AUV, forward-looking MBES data from ROVs and ROV-acquired videos to examine walls from Rockall Bank and Whittard Canyon, Northeast Atlantic. High-resolution 3D point clouds were extracted from each sonar dataset and structure from motion photogrammetry (SfM) was applied to recreate 3D representations of video transects along the walls. With these reconstructions, it was possible to interact with extensive sections of video footage and precisely position individuals. Terrain variables were derived on scales comparable to those experienced by megabenthic individuals. These were used to show differences in environmental conditions between observed and background locations as well as explain spatial patterns in ecological characteristics. In addition, since the SfM 3D reconstructions retained colours, they were employed to separate and quantify live coral colonies versus dead framework. The combination of these new technologies allows us, for the first time, to map the physical 3D structure of previously inaccessible habitats and demonstrates the complexity and importance of vertical structures

    A framework for the development of a global standardised marine taxon reference image database (SMarTaR-ID) to support image-based analyses

    Get PDF
    Video and image data are regularly used in the field of benthic ecology to document biodiversity. However, their use is subject to a number of challenges, principally the identification of taxa within the images without associated physical specimens. The challenge of applying traditional taxonomic keys to the identification of fauna from images has led to the development of personal, group, or institution level reference image catalogues of operational taxonomic units (OTUs) or morphospecies. Lack of standardisation among these reference catalogues has led to problems with observer bias and the inability to combine datasets across studies. In addition, lack of a common reference standard is stifling efforts in the application of artificial intelligence to taxon identification. Using the North Atlantic deep sea as a case study, we propose a database structure to facilitate standardisation of morphospecies image catalogues between research groups and support future use in multiple front-end applications. We also propose a framework for coordination of international efforts to develop reference guides for the identification of marine species from images. The proposed structure maps to the Darwin Core standard to allow integration with existing databases. We suggest a management framework where high-level taxonomic groups are curated by a regional team, consisting of both end users and taxonomic experts. We identify a mechanism by which overall quality of data within a common reference guide could be raised over the next decade. Finally, we discuss the role of a common reference standard in advancing marine ecology and supporting sustainable use of this ecosystem

    Structure-from-motion photogrammetry demonstrates that fine-scale seascape heterogeneity is essential in shaping mesophotic fish assemblages

    Full text link
    Benthic components of tropical mesophotic coral ecosystems (MCEs) are home to diverse fish assemblages, but the effect of multiscale spatial benthic characteristics on MCE fish is not well understood. To investigate the influence of fine-scale benthic seascape structure and broad-scale environmental characteristics on MCE fish, we surveyed fish assemblages in Seychelles at 30, 60 and 120 m depth using submersible video transects. Spatial pattern metrics from seascape ecology were applied to quantify fine-scale benthic seascape composition, configuration and terrain morphology from structure-from-motion photogrammetry and multibeam echosounder bathymetry and to explore seascape–fish associations. Hierarchical clustering using fish abundance and biomass data identified four distinct assemblages separated by the depth and geographic location, but also significantly influenced by variations in fine-scale seascape structure. Results further revealed variable responses of assemblage characteristics (fish biomass, abundance, trophic group richness, Shannon diversity) to seascape heterogeneity at different depths. Sites with steep slopes and high terrain complexity hosted higher fish abundance and biomass, with shallower fish assemblages (30–60 m) positively associated with aggregated patch mixtures of coral, rubble, sediment and macroalgae with variable patch shapes. Deeper fish assemblages (120 m) were positively associated with relief and structural complexity and local variability in the substratum and benthic cover. Our study demonstrates the potential of spatial pattern metrics quantifying benthic composition, configuration and terrain structure to delineate mesophotic fish–habitat associations. Furthermore, incorporating a finer-scale perspective proved valuable to explain the compositional patterns of MCE fish assemblages. As developments in marine surveying and monitoring of MCEs continue, we suggest that future studies incorporating spatial pattern metrics with multiscale remotely sensed data can provide insights will that are both ecologically meaningful to fish and operationally relevant to conservation strategies

    Mapping, quantifying and comparing seascape heterogeneity of Southwest Indian Ridge seamounts

    Get PDF
    Context Seamounts are abundant geomorphological features creating seabed spatial heterogeneity, a main driver of deep-sea biodiversity. Despite its ecological importance, substantial knowledge gaps exist on the character of seamount spatial heterogeneity. Objectives This study aimed to map, quantify and compare seamount seascapes to test whether individual habitats and seamounts differ in geomorphological structuring, and to identify spatial pattern metrics useful to discriminate between habitats and seamounts. Methods We mapped and classified geomorphological habitat using bathymetric data collected at five Southwest Indian Ridge seamounts. Spatial pattern metrics from landscape ecology are applied to quantify and compare seascape heterogeneity in composition and configuration represented in resulting habitat maps. Results Whilst part of the same regional geological feature, seamounts differed in seascape composition and configuration. Five geomorphological habitat types occurred across sites, which within seamounts differed in patch area, shape and clustering, with ridge habitat most dissimilar. Across seamounts, the spatial distribution of patches differed in number, shape, habitat aggregation and intermixing, and outcomes were used to score seamounts on a gradient from low to high spatial heterogeneity. Conclusions Although seamounts have been conceptualised as similar habitats, this study revealed quantitative differences in seascape spatial heterogeneity. As variations in relative proportion and spatial relationships of habitats within seamounts may influence ecological functioning, the proposed quantitative approach can generate insights into within-seamount characteristics and seamount types relevant for habitat mappers and marine managers focusing on representational ecosystem-based management of seamounts. Further research into associations of sessile and mobile seamount biodiversity with seascape composition and configuration at relevant spatial scales will help improve ecological interpretation of metrics, as will incorporating oceanographic parameters

    Geomorphological drivers of deeper reef habitats around Seychelles

    Full text link
    Mesophotic (30–150 m) and rariphotic (150–300 m) deeper reef habitats are important from an ecological and conservation perspective, yet remain understudied. Key knowledge gaps exist on the environmental patterns and processes that drive and shape their geographical distributions. Understanding these is particularly important for regions as the Western Indian Ocean, where deeper reefs are poorly known but support food security and host economically important species. Spatial predictive models of assemblage occurrences, using terrain variables as predictors, offer a solution to address knowledge gaps around deeper reef distributions. We identified relationships between seafloor geomorphology, quantified at multiple scales, and sessile benthic assemblages in four atoll seascapes in Seychelles using terrain models derived from high-resolution multibeam sonar and underwater video surveys. Using random forests and boosted regression trees, we demonstrated that terrain derivatives extracted over multiple scales perform as reliable predictors of deeper reef assemblages. The most influential environmental predictors were depth, distance to shore, topographic complexity, slope and curvature and substrate characteristics. The relative importance of predictors was explained by assemblage functional characteristics. Assemblage–environment relationships were used to produce probability distribution maps that showed similar distributional patterns for identified assemblages across locations, with high occurrence probabilities linked to complex geomorphological structures. Our results help contribute to a consistent baseline understanding of the relationship between seascape structure and mesophotic reef ecosystems in this area. Complex geomorphological structures, including terraces and paleoshorelines, supported high densities of mesophotic assemblages and could be considered priority habitats for management

    Mapping, quantifying and comparing seascape heterogeneity of Southwest Indian Ridge seamounts

    Full text link
    Context Seamounts are abundant geomorphological features creating seabed spatial heterogeneity, a main driver of deep-sea biodiversity. Despite its ecological importance, substantial knowledge gaps exist on the character of seamount spatial heterogeneity. Objectives This study aimed to map, quantify and compare seamount seascapes to test whether individual habitats and seamounts differ in geomorphological structuring, and to identify spatial pattern metrics useful to discriminate between habitats and seamounts. Methods We mapped and classified geomorphological habitat using bathymetric data collected at five Southwest Indian Ridge seamounts. Spatial pattern metrics from landscape ecology are applied to quantify and compare seascape heterogeneity in composition and configuration represented in resulting habitat maps. Results Whilst part of the same regional geological feature, seamounts differed in seascape composition and configuration. Five geomorphological habitat types occurred across sites, which within seamounts differed in patch area, shape and clustering, with ridge habitat most dissimilar. Across seamounts, the spatial distribution of patches differed in number, shape, habitat aggregation and intermixing, and outcomes were used to score seamounts on a gradient from low to high spatial heterogeneity. Conclusions Although seamounts have been conceptualised as similar habitats, this study revealed quantitative differences in seascape spatial heterogeneity. As variations in relative proportion and spatial relationships of habitats within seamounts may influence ecological functioning, the proposed quantitative approach can generate insights into within-seamount characteristics and seamount types relevant for habitat mappers and marine managers focusing on representational ecosystem-based management of seamounts. Further research into associations of sessile and mobile seamount biodiversity with seascape composition and configuration at relevant spatial scales will help improve ecological interpretation of metrics, as will incorporating oceanographic parameters.</p

    Seamount seascape composition and configuration shape Southwest Indian Ridge fish assemblages

    Full text link
    Seamounts are commercially important fishing grounds. Yet, little is known about their physical characteristics as fish habitat, important for informing conservation and ecosystem-based management. This study examines how multiscale seabed spatial heterogeneity influences commercially important fish families at three Southwest Indian Ridge seamounts (Coral Seamount, Melville Bank and Atlantis Bank). We quantified seascape heterogeneity from bathymetry and geomorphological habitat maps and identified 15 focal fish families from video data. Fish-habitat associations were examined using spatial pattern metrics that measured terrain morphology, seascape composition (variety and relative abundance of patch types) and seascape configuration (spatial arrangement of patches). Broader seascape context was characterised by geographic location and water depth. Multivariate regression trees and random forests modelled fish-habitat associations and identified the most influential explanatory variables. Assemblage characteristics and individual families were strongly influenced by geographic location and depth, and at finer scales (500 m buffers) seascape composition and configuration helped explain fish-habitat associations. Spatially continuous summit habitat and complex shaped ridge features supported high abundance and diversity of commercial fish families. Metrics of seascape composition and configuration (i.e., habitat size, shape and structural connectivity) had higher predictive power than the terrain metrics commonly used in developing proxies for deep-water fish species and biodiversity. These outcomes indicate that seascape metrics, commonly applied on land and in shallow marine environments, are also relevant environmental predictors of fish distributions in deep-sea environments. We highlight strong context dependency and depth-specific associations that hinder attempts to draw wider generalisations on fish-seascape linkages for seamounts.</p
    corecore