31 research outputs found

    HIV-1 co-receptor usage:influence on mother-to-child transmission and pediatric infection

    Get PDF
    Viral CCR5 usage is not a predictive marker of mother to child transmission (MTCT) of HIV-1. CXCR4-using viral variants are little represented in pregnant women, have an increased although not significant risk of transmission and can be eventually also detected in the neonates. Genetic polymorphisms are more frequently of relevance in the child than in the mother. However, specific tissues as the placenta or the intestine, which are involved in the prevalent routes of infection in MTCT, may play an important role of selective barriers

    The brachyspira hyodysenteriae ftnA gene : DNA vaccination and real-time PCR quantification of bacteria in a mouse model of disease

    Full text link
    The nucleotide sequence of the Brachyspira hyodysenteriae ftnA gene, encoding a putative ferritin protein (FtnA), was determined. Analysis of the sequence predicted that this gene encoded a protein of 180 amino acids. RT-PCR and Western blot showed that the ftnA gene was expressed in B. hyodysenteriae, and evidence suggests that FtnA stores iron rather than haem. ftnA was delivered as DNA and recombinant protein vaccines in a mouse model of B. hyodysenteriae infection. Vaccine efficacy was monitored by caecal pathology and quantification of B. hyodysenteriae numbers in the caeca of infected mice by real-time PCR.<br /

    CD4(+) T-cell responses and distribution at the colonic mucosa during Brachyspira hyodysenteriae-induced colitis in pigs

    No full text
    The spirochaete Brachyspira hyodysenteriae causes swine dysentery, a severe colitis characterized by mucosal enlargement as a result of crypt elongation and epithelial necrosis. Most efforts to understand the pathogenesis of this disease have focused on the aetiological agent and its virulence factors. However, the host immune response has been considered an important factor in disease development. Previous research has shown that B. hyodysenteriae induces systemic CD4(+) and γδ T-cell responses after intramuscular immunization. Here, we have evaluated changes in the CD4(+) and γδ T-cell composition and distribution the different compartments of the colonic mucosa of pigs challenged with B. hyodysenteriae. We report that, in infected pigs, γδ T cells were significantly depleted from the epithelial layer, although their numbers were maintained in the lamina propria. In addition, CD4(+) T cells aggregated in clusters located in the lamina propria and submucosa. Ex vivo analyses of CD4(+) T-cell responses to B. hyodysenteriae antigens correlated with the changes in the mucosal CD4(+) T-cell distribution observed in infected pigs; CD4(+) T cells recovered from peripheral blood and colonic lymph nodes of infected pigs proliferated to B. hyodysenteriae antigens, whereas no differences were found in the γδ T-cell responses between challenged and control groups. In addition, colonic lymph node CD4(+) T cells had a predominant memory/activated phenotype. These results indicate that infection with B. hyodysenteriae induces a mucosal CD4(+) T-cell response and points to CD4(+) T cells being important contributors to the immunopathogenesis of swine dysentery
    corecore