1,677 research outputs found

    Nonlinear quantum state transformation of spin-1/2

    Get PDF
    A non-linear quantum state transformation is presented. The transformation, which operates on pairs of spin-1/2, can be used to distinguish optimally between two non-orthogonal states. Similar transformations applied locally on each component of an entangled pair of spin-1/2 can be used to transform a mixed nonlocal state into a quasi-pure maximally entangled singlet state. In both cases the transformation makes use of the basic building block of the quantum computer, namely the quantum-XOR gate.Comment: 12 pages, LaTeX, amssym, epsfig (2 figures included

    Unambiguous state discrimination in quantum cryptography with weak coherent states

    Full text link
    The use of linearly independent signal states in realistic implementations of quantum key distribution (QKD) enables an eavesdropper to perform unambiguous state discrimination. We explore quantitatively the limits for secure QKD imposed by this fact taking into account that the receiver can monitor to some extend the photon number statistics of the signals even with todays standard detection schemes. We compare our attack to the beamsplitting attack and show that security against beamsplitting attack does not necessarily imply security against the attack considered here.Comment: 10 pages, 6 figures, updated version with added discussion of beamsplitting attac

    Estimates for practical quantum cryptography

    Get PDF
    In this article I present a protocol for quantum cryptography which is secure against attacks on individual signals. It is based on the Bennett-Brassard protocol of 1984 (BB84). The security proof is complete as far as the use of single photons as signal states is concerned. Emphasis is given to the practicability of the resulting protocol. For each run of the quantum key distribution the security statement gives the probability of a successful key generation and the probability for an eavesdropper's knowledge, measured as change in Shannon entropy, to be below a specified maximal value.Comment: Authentication scheme corrected. Other improvements of presentatio

    Oscillator model for dissipative QED in an inhomogeneous dielectric

    Full text link
    The Ullersma model for the damped harmonic oscillator is coupled to the quantised electromagnetic field. All material parameters and interaction strengths are allowed to depend on position. The ensuing Hamiltonian is expressed in terms of canonical fields, and diagonalised by performing a normal-mode expansion. The commutation relations of the diagonalising operators are in agreement with the canonical commutation relations. For the proof we replace all sums of normal modes by complex integrals with the help of the residue theorem. The same technique helps us to explicitly calculate the quantum evolution of all canonical and electromagnetic fields. We identify the dielectric constant and the Green function of the wave equation for the electric field. Both functions are meromorphic in the complex frequency plane. The solution of the extended Ullersma model is in keeping with well-known phenomenological rules for setting up quantum electrodynamics in an absorptive and spatially inhomogeneous dielectric. To establish this fundamental justification, we subject the reservoir of independent harmonic oscillators to a continuum limit. The resonant frequencies of the reservoir are smeared out over the real axis. Consequently, the poles of both the dielectric constant and the Green function unite to form a branch cut. Performing an analytic continuation beyond this branch cut, we find that the long-time behaviour of the quantised electric field is completely determined by the sources of the reservoir. Through a Riemann-Lebesgue argument we demonstrate that the field itself tends to zero, whereas its quantum fluctuations stay alive. We argue that the last feature may have important consequences for application of entanglement and related processes in quantum devices.Comment: 24 pages, 1 figur

    Unambiguous State Discrimination of Coherent States with Linear Optics: Application to Quantum Cryptography

    Get PDF
    We discuss several methods for unambiguous state discrimination of N symmetric coherent states using linear optics and photodetectors. One type of measurements is shown to be optimal in the limit of small photon numbers for any N. For the special case of N=4 this measurement can be fruitfully used by the receiving end (Bob) in an implementation of the BB84 quantum key distribution protocol using faint laser pulses. In particular, if Bob detects only a single photon the procedure is equivalent to the standard measurement that he would have to perform in a single-photon implementation of BB84, if he detects two photons Bob will unambiguously know the bit sent to him in 50% of the cases without having to exchange basis information, and if three photons are detected, Bob will know unambiguously which quantum state was sent.Comment: 5 RevTeX pages, 2 eps figure

    Periodic and Quasi-Periodic Compensation Strategies of Extreme Outages caused by Polarization Mode Dispersion and Amplifier Noise

    Full text link
    Effect of birefringent disorder on the Bit Error Rate (BER) in an optical fiber telecommunication system subject to amplifier noise may lead to extreme outages, related to anomalously large values of BER. We analyze the Probability Distribution Function (PDF) of BER for various strategies of Polarization Mode Dispersion (PMD) compensation. A compensation method is proposed that is capable of more efficient extreme outages suppression, which leads to substantial improvement of the fiber system performance.Comment: 3 pages, 1 figure, Submitted to IEEE Photonics Letter
    corecore