2,072 research outputs found

    Functional design for operational earth resources ground data processing

    Get PDF
    The author has identified the following significant results. Study emphasis was on developing a unified concept for the required ground system, capable of handling data from all viable acquisition platforms and sensor groupings envisaged as supporting operational earth survey programs. The platforms considered include both manned and unmanned spacecraft in near earth orbit, and continued use of low and high altitude aircraft. The sensor systems include both imaging and nonimaging devices, operated both passively and actively, from the ultraviolet to the microwave regions of the electromagnetic spectrum

    Math and the Mouse: Explorations of Mathematics and Science in Walt Disney World

    Get PDF
    Math and the Mouse is an intensive, collaborative, project-driven, study away course that runs during the three-week May Experience term at Furman University and has many of the attributes of a course-based undergraduate research experience in mathematics. We take twelve students to Orlando, Florida to study the behind-the-scenes mathematics employed to make Walt Disney World operate efficiently. Students learn techniques of mathematical modeling (mostly resource allocation, logistics, and scheduling models), statistical analysis (mostly probability, clustering, data collection, and hypothesis testing), and ow management (queuing theory and some beginning ow dynamics) in an applied setting. Through planned course modules, collaborative activities, conversations with guest speakers, and three group projects, one of which is of the students\u27 choosing, this academic experience provides an engaged learning experience that shows how material from eleven academic courses comes together in connection with real-world applications

    High-fidelity imaging of a band insulator in a three-dimensional optical lattice clock

    Full text link
    We report on the observation of a high-density, band insulating state in a three-dimensional optical lattice clock. Filled with a nuclear-spin polarized degenerate Fermi gas of 87Sr, the 3D lattice has one atom per site in the ground motional state, thus guarding against frequency shifts due to contact interactions. At this high density where the average distance between atoms is comparable to the probe wavelength, standard imaging techniques suffer from large systematic errors. To spatially probe frequency shifts in the clock and measure thermodynamic properties of this system, accurate imaging techniques at high optical depths are required. Using a combination of highly saturated fluorescence and absorption imaging, we confirm the density distribution in our 3D optical lattice in agreement with a single spin band insulating state. Combining our clock platform with this high filling fraction opens the door to studying new classes of long-lived, many-body states arising from dipolar interactions.Comment: 10 pages, 8 figure

    Interaction of surface acoustic waves with a two-dimensional electron gas in the presence of spin splitting of the Landau bands

    Full text link
    The absorption and variation of the velocity of a surface acoustic wave of frequency ff= 30 MHz interacting with two-dimensional electrons are investigated in GaAs/AlGaAs heterostructures with an electron density n=(1.3−2.8)×1011cm−2n=(1.3 - 2.8) \times 10^{11} cm^{-2} at TT=1.5 - 4.2 K in magnetic fields up to 7 T. Characteristic features associated with spin splitting of the Landau level are observed. The effective g factor and the width of the spin-split Landau bands are determined: g∗≃5g^* \simeq 5 and AA=0.6 meV. The greater width of the orbital-split Landau bands (2 meV) relative to the spin-split bands is attributed to different shielding of the random fluctuation potential of charged impurities by 2D electrons. The mechanisms of the nonlinearities manifested in the dependence of the absorption and the velocity increment of the SAW on the SAW power in the presence of spin splitting of the Landau levels are investigated.Comment: Revtex 5 pages + 5 EPS Figures, v.2 - minor corrections in text and pic

    Long beating wavelength in the Schwarz-Hora effect

    Full text link
    Thirty years ago, H.Schwarz has attempted to modulate an electron beam with optical frequency. When a 50-keV electron beam crossed a thin crystalline dielectric film illuminated with laser light, electrons produced the electron-diffraction pattern not only at a fluorescent target but also at a nonfluorescent target. In the latter case the pattern was of the same color as the laser light (the Schwarz-Hora effect). This effect was discussed extensively in the early 1970s. However, since 1972 no reports on the results of further attempts to repeat those experiments in other groups have appeared, while the failures of the initial such attempts have been explained by Schwarz. The analysis of the literature shows there are several unresolved up to now contradictions between the theory and the Schwarz experiments. In this work we consider the interpretation of the long-wavelength spatial beating of the Schwarz-Hora radiation. A more accurate expression for the spatial period has been obtained, taking into account the mode structure of the laser field within the dielectric film. It is shown that the discrepancy of more than 10% between the experimental and theoretical results for the spatial period cannot be reduced by using the existing quantum models that consider a collimated electron beam.Comment: 3 pages, RevTe

    Cold collisions of OH and Rb. I: the free collision

    Get PDF
    We have calculated elastic and state-resolved inelastic cross sections for cold and ultracold collisions in the Rb(1S^1 S) + OH(2Π3/2^2 \Pi_{3/2}) system, including fine-structure and hyperfine effects. We have developed a new set of five potential energy surfaces for Rb-OH(2Π^2 \Pi) from high-level {\em ab initio} electronic structure calculations, which exhibit conical intersections between covalent and ion-pair states. The surfaces are transformed to a quasidiabatic representation. The collision problem is expanded in a set of channels suitable for handling the system in the presence of electric and/or magnetic fields, although we consider the zero-field limit in this work. Because of the large number of scattering channels involved, we propose and make use of suitable approximations. To account for the hyperfine structure of both collision partners in the short-range region we develop a frame-transformation procedure which includes most of the hyperfine Hamiltonian. Scattering cross sections on the order of 10−1310^{-13} cm2^2 are predicted for temperatures typical of Stark decelerators. We also conclude that spin orientation of the partners is completely disrupted during the collision. Implications for both sympathetic cooling of OH molecules in an environment of ultracold Rb atoms and experimental observability of the collisions are discussed.Comment: 20 pages, 16 figure

    BMP signaling modulates hedgehog-induced secondary heart field proliferation

    Get PDF
    AbstractSonic hedgehog signaling in the secondary heart field has a clear role in cardiac arterial pole development. In the absence of hedgehog signaling, proliferation is reduced in secondary heart field progenitors, and embryos predominantly develop pulmonary atresia. While it is expected that proliferation in the secondary heart field would be increased with elevated hedgehog signaling, this idea has never been tested. We hypothesized that up-regulating hedgehog signaling would increase secondary heart field proliferation, which would lead to arterial pole defects. In culture, secondary heart field explants proliferated up to 6-fold more in response to the hedgehog signaling agonist SAG, while myocardial differentiation and migration were unaffected. Treatment of chick embryos with SAG at HH14, just before the peak in secondary heart field proliferation, resulted unexpectedly in stenosis of both the aortic and pulmonary outlets. We examined proliferation in the secondary heart field and found that SAG-treated embryos exhibited a much milder increase in proliferation than was indicated by the in vitro experiments. To determine the source of other signaling factors that could modulate increased hedgehog signaling, we co-cultured secondary heart field explants with isolated pharyngeal endoderm or outflow tract and found that outflow tract co-cultures prevented SAG-induced proliferation. BMP2 is made and secreted by the outflow tract myocardium. To determine whether BMP signaling could prevent SAG-induced proliferation, we treated explants with SAG and BMP2 and found that BMP2 inhibited SAG-induced proliferation. In vivo, SAG-treated embryos showed up-regulated BMP2 expression and signaling. Together, these results indicate that BMP signaling from the outflow tract modulates hedgehog-induced proliferation in the secondary heart field

    Physical Electronics

    Get PDF
    Contains reports on three research projects
    • …
    corecore