30 research outputs found
Recommended from our members
Epiplastral and geographic variation in Echmatemys, a geoemydid turtle from the Eocene of North America: A multi-tiered analysis of epiplastral shape complexity
Numerous geoemydid turtle fossils from the extinct genus Echmatemys have been recovered from the middle Eocene Uinta Formation, Uinta Basin, Utah over the past several decades. Here, we tested whether co-occurring Uintan species Echmatemys callopyge and E. uintensis can be reliably differentiated based on epiplastral morphology, and whether their geospatial distributions overlapped significantly. The geographic spatial and stratigraphic distributions of Uinta Basin E. callopyge and E. uintensis specimens were compared using ArcGIS and analysis of variance (ANOVA). The analysis revealed overlapping geographic distributions of these two species, and no significant differences in stratigraphic dispersal. This finding of extensive geospatial overlap between the two Uintan Echmatemys species highlights the need for accurate taxonomic identification, such as the gular scale morphology validated here. In addition, we sought to address a methodological question regarding the relative efficacy of data complexity in this context. Using epiplastra from three additional Eocene species of Echmatemys, we employed hierarchical analyses of increasing data complexity, from standard linear dimensions to 2D geometric morphometrics to 3D laser scans, to determine the degree to which data complexity contributes to taxonomic assessments within this genus. Uintan species E. callopyge and E. uintensis were found to differ significantly in epiplastral shape as captured by all three categories of data. These findings verify that these two co-occurring species can be differentiated consistently using the shape of the gular scale, and that the use of geometric morphometrics can improve identification of fragmentary specimens. Among the non-Uintan species, dorsal and ventral 2D landmark data reliably differentiated among species, but the linear dimensions were less useful
Recommended from our members
Epiplastral and geographic variation in Echmatemys, a geoemydid turtle from the Eocene of North America: A multi-tiered analysis of epiplastral shape complexity
Numerous geoemydid turtle fossils from the extinct genus Echmatemys have been recovered from the middle Eocene Uinta Formation, Uinta Basin, Utah over the past several decades. Here, we tested whether co-occurring Uintan species Echmatemys callopyge and E. uintensis can be reliably differentiated based on epiplastral morphology, and whether their geospatial distributions overlapped significantly. The geographic spatial and stratigraphic distributions of Uinta Basin E. callopyge and E. uintensis specimens were compared using ArcGIS and analysis of variance (ANOVA). The analysis revealed overlapping geographic distributions of these two species, and no significant differences in stratigraphic dispersal. This finding of extensive geospatial overlap between the two Uintan Echmatemys species highlights the need for accurate taxonomic identification, such as the gular scale morphology validated here. In addition, we sought to address a methodological question regarding the relative efficacy of data complexity in this context. Using epiplastra from three additional Eocene species of Echmatemys, we employed hierarchical analyses of increasing data complexity, from standard linear dimensions to 2D geometric morphometrics to 3D laser scans, to determine the degree to which data complexity contributes to taxonomic assessments within this genus. Uintan species E. callopyge and E. uintensis were found to differ significantly in epiplastral shape as captured by all three categories of data. These findings verify that these two co-occurring species can be differentiated consistently using the shape of the gular scale, and that the use of geometric morphometrics can improve identification of fragmentary specimens. Among the non-Uintan species, dorsal and ventral 2D landmark data reliably differentiated among species, but the linear dimensions were less useful
Polymorphisms of the dopamine D4 receptor gene (DRD4 VNTR) and cannabinoid CB1 receptor gene (CNR1) are not strongly related to cue-reactivity after alcohol exposure
Contains fulltext :
56538.pdf (publisher's version ) (Closed access)Polymorphisms in the D4 dopamine receptor gene (DRD4) and the CB1 cannabinoid receptor gene (CNR1) have been associated with a differential response to alcohol after consumption. The goal of the present study was to investigate whether heavy drinkers with these polymorphisms would respond with enhanced cue-reactivity after alcohol exposure. Eighty-eight male heavy drinkers were genotyped for the DRD4 variable number of tandem repeats (VNTR) [either DRD4 long (L) or short (S)] and the CNR1 rs2023239 polymorphism (either CT/CC or TT). Participants were exposed to water and beer in 3-minute trials. Dependent variables of main interest were subjective craving for alcohol, subjective arousal and salivary reactivity. Overall, no strong evidence was found for stronger cue-reactivity (= outcome difference between beer and water trial) in the DRD4 L and CNR1 C allele groups. The DRD4 VNTR polymorphism tended to moderate salivary reactivity such that DRD4 L participants showed a larger beverage effect than the DRD4 S participants. Unexpectedly, the DRD4 L participants reported, on average, less craving for alcohol and more subjective arousal during cue exposure, compared with the DRD4 S participants. As weekly alcohol consumption increased, the CNR1 C allele group tended to report more craving for alcohol during the alcohol exposure than the T allele group. The DRD4 and CNR1 polymorphisms do not appear to strongly moderate cue-reactivity after alcohol cue exposure, in male heavy drinkers
Associations Between Age and Resting State Connectivity Are Partially Dependent Upon Cardiovascular Fitness
Previous research suggests a marked impact of aging on structural and functional connectivity within the frontoparietal control network (FPCN) and default mode network (DMN). As aging is also associated with reductions in cardiovascular fitness, age-related network connectivity differences reported by past studies could be partially due to age-related declines in fitness. Here, we use data collected as part of a 16-week exercise intervention to explore relationships between fitness and functional connectivity. Young and older adults completed baseline assessments including cardiovascular fitness, health and functioning measures, and an fMRI session. Scan data were acquired on a Siemens 3T MRI scanner with a 32-channel head coil. Results from regression analyses indicated that average connectivity did not differ between young and older adults. However, individual ROI-to-ROI connectivity analyses indicated weaker functional correlations for older adults between specific regions in the FPCN and DMN and, critically, many of these differences were attenuated when fitness was accounted for. Taken together, findings suggest that fitness exerts regional rather than global effects on network connectivity. Copyright © 2022 Gust, Moe, Seals, Banich, Andrews-Hanna, Hutchison and Bryan.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]