12,009 research outputs found
An Observed Entanglement of Lagenorhynchus obliquidens in the High Seas Driftnet Area in the North Pacific
In August, 1991, an entanglement event was observed in the High Seas Driftnet area in the North Pacific. This description of an entanglement of Lagenorhynchus obliquidens is the first such documented report of dolphins entangling while bowriding. One of the entangled dolphins was rescued from the driftnet
Novel Dynamical Resonances in Finite-Temperature Bose-Einstein Condensates
We describe a variety of intriguing mode-coupling effects which can occur in
a confined Bose-Einstein condensed system at finite temperature. These arise
from strong interactions between a condensate fluctuation and resonances of the
thermal cloud yielding strongly non-linear behaviour. We show how these
processes can be affected by altering the aspect ratio of the trap, thereby
changing the relevant mode-matching conditions. We illustrate how direct
driving of the thermal cloud can lead to significant shifts in the excitation
spectrum for a number of modes and provide further experimental scenarios in
which the dramatic behaviour observed for the mode at JILA (Jin {\it et
al.} 1997) can be repeated. Our theoretical description is based on a
successful second-order finite-temperature quantum field theory which includes
the full coupled dynamics of the condensate and thermal cloud and all relevant
finite-size effects
An Exploratory Study of Forces and Frictions affecting Large-Scale Model-Driven Development
In this paper, we investigate model-driven engineering, reporting on an
exploratory case-study conducted at a large automotive company. The study
consisted of interviews with 20 engineers and managers working in different
roles. We found that, in the context of a large organization, contextual forces
dominate the cognitive issues of using model-driven technology. The four forces
we identified that are likely independent of the particular abstractions chosen
as the basis of software development are the need for diffing in software
product lines, the needs for problem-specific languages and types, the need for
live modeling in exploratory activities, and the need for point-to-point
traceability between artifacts. We also identified triggers of accidental
complexity, which we refer to as points of friction introduced by languages and
tools. Examples of the friction points identified are insufficient support for
model diffing, point-to-point traceability, and model changes at runtime.Comment: To appear in proceedings of MODELS 2012, LNCS Springe
Modeling the buckling and delamination of thin films
I study numerically the problem of delamination of a thin film elastically
attached to a rigid substrate. A nominally flat elastic thin film is modeled
using a two-dimensional triangular mesh. Both compression and bending
rigidities are included to simulate compression and bending of the film. The
film can buckle (i.e., abandon its flat configuration) when enough compressive
strain is applied. The possible buckled configurations of a piece of film with
stripe geometry are investigated as a function of the compressive strain. It is
found that the stable configuration depends strongly on the applied strain and
the Poisson ratio of the film. Next, the film is considered to be attached to a
rigid substrate by springs that can break when the detaching force exceeds a
threshold value, producing the partial delamination of the film. Delamination
is induced by a mismatch of the relaxed configurations of film and substrate.
The morphology of the delaminated film can be followed and compared with
available experimental results as a function of model parameters.
`Telephone-cord', polygonal, and `brain-like' patterns qualitatively similar to
experimentally observed configurations are obtained in different parameter
regions. The main control parameters that select the different patterns are the
mismatch between film and substrate and the degree of in-plane relaxation
within the unbuckled regions.Comment: 8 pages, 10 figure
Task Planner for Simultaneous Fulfillment of Operational, Geometric and Uncertainty-Reduction Goals
Our ultimate goal in robot planning is to develop a planner which can create complete assembly plans given as input a high level description of assembly goals, geometric models of the components of the assembly, and a description of the capabilities of the work cell (including the robot and the sensory system). In this paper, we introduce SPAR, a planning system which reasons about high level operational goals, geometric goals and uncertainty-reduction goals in order to create assembly plans which consist of manipulations as well as sensory operations when appropriate. Operational planning is done using a nonlinear, constraint posting planner. Geometric planning is accomplished by constraining the execution of operations in the plan so that geometric goals are satisfied, or, if the geometric configuration of the world prevents this, by introducing new operations into the plan with the appropriate constraints. When the uncertainty in the world description exceeds that specified by the uncertainty-reduction goals, SPAR introduces either sensing operations or manipulations to reduce that uncertainty to acceptable levels. If SPAR cannot find a way to sufficiently reduce uncertainties, it does not abandon the plan. Instead, it augments the plan with sensing operations to be used to verify the execution of the action, and, when possible, posts possible error recovery plans, although at this point, the verification operations and recovery plans are predefined
- …