10,110 research outputs found

    An Observed Entanglement of Lagenorhynchus obliquidens in the High Seas Driftnet Area in the North Pacific

    Get PDF
    In August, 1991, an entanglement event was observed in the High Seas Driftnet area in the North Pacific. This description of an entanglement of Lagenorhynchus obliquidens is the first such documented report of dolphins entangling while bowriding. One of the entangled dolphins was rescued from the driftnet

    Task Planner for Simultaneous Fulfillment of Operational, Geometric and Uncertainty-Reduction Goals

    Get PDF
    Our ultimate goal in robot planning is to develop a planner which can create complete assembly plans given as input a high level description of assembly goals, geometric models of the components of the assembly, and a description of the capabilities of the work cell (including the robot and the sensory system). In this paper, we introduce SPAR, a planning system which reasons about high level operational goals, geometric goals and uncertainty-reduction goals in order to create assembly plans which consist of manipulations as well as sensory operations when appropriate. Operational planning is done using a nonlinear, constraint posting planner. Geometric planning is accomplished by constraining the execution of operations in the plan so that geometric goals are satisfied, or, if the geometric configuration of the world prevents this, by introducing new operations into the plan with the appropriate constraints. When the uncertainty in the world description exceeds that specified by the uncertainty-reduction goals, SPAR introduces either sensing operations or manipulations to reduce that uncertainty to acceptable levels. If SPAR cannot find a way to sufficiently reduce uncertainties, it does not abandon the plan. Instead, it augments the plan with sensing operations to be used to verify the execution of the action, and, when possible, posts possible error recovery plans, although at this point, the verification operations and recovery plans are predefined

    Coating thermal noise of a finite-size cylindrical mirror

    Full text link
    Thermal noise of a mirror is one of the limiting noise sources in the high precision measurement such as gravitational-wave detection, and the modeling of thermal noise has been developed and refined over a decade. In this paper, we present a derivation of coating thermal noise of a finite-size cylindrical mirror based on the fluctuation-dissipation theorem. The result agrees to a previous result with an infinite-size mirror in the limit of large thickness, and also agrees to an independent result based on the mode expansion with a thin-mirror approximation. Our study will play an important role not only to accurately estimate the thermal-noise level of gravitational-wave detectors but also to help analyzing thermal noise in quantum-measurement experiments with lighter mirrors.Comment: 13 pages, 4 figure

    Approximations of Schatten Norms via Taylor Expansions

    Full text link
    In this paper we consider symmetric, positive semidefinite (SPSD) matrix AA and present two algorithms for computing the pp-Schatten norm ∥A∥p\|A\|_p. The first algorithm works for any SPSD matrix AA. The second algorithm works for non-singular SPSD matrices and runs in time that depends on κ=λ1(A)λn(A)\kappa = {\lambda_1(A)\over \lambda_n(A)}, where λi(A)\lambda_i(A) is the ii-th eigenvalue of AA. Our methods are simple and easy to implement and can be extended to general matrices. Our algorithms improve, for a range of parameters, recent results of Musco, Netrapalli, Sidford, Ubaru and Woodruff (ITCS 2018) and match the running time of the methods by Han, Malioutov, Avron, and Shin (SISC 2017) while avoiding computations of coefficients of Chebyshev polynomials

    Gapless finite-TT theory of collective modes of a trapped gas

    Full text link
    We present predictions for the frequencies of collective modes of trapped Bose-condensed 87^{87}Rb atoms at finite temperature. Our treatment includes a self-consistent treatment of the mean-field from finite-TT excitations and the anomolous average. This is the first gapless calculation of this type for a trapped Bose-Einstein condensed gas. The corrections quantitatively account for the downward shift in the m=2m=2 excitation frequencies observed in recent experiments as the critical temperature is approached.Comment: 4 pages Latex and 2 postscript figure

    Failure to define level 1 care

    Get PDF

    Electron Temperature of Ultracold Plasmas

    Full text link
    We study the evolution of ultracold plasmas by measuring the electron temperature. Shortly after plasma formation, competition between heating and cooling mechanisms drives the electron temperature to a value within a narrow range regardless of the initial energy imparted to the electrons. In agreement with theory predictions, plasmas exhibit values of the Coulomb coupling parameter Γ\Gamma less than 1.Comment: 4 pages, plus four figure
    • …
    corecore