432 research outputs found
Safety in Buildings
Building codes are essentially sets of safety regulations in respect of structure, fire, and health. They were originally developed in response to frequently demonstrated hazards of structural collapse, catastrophic fires, and the spread of disease. Closely related to the life of the community, these matters became municipal responsibilities. They remain so today, being delegated by the provinces which have the over-all responsibility for civil rights, including safety
A perspective from extinct radionuclides on a Young Stellar Object: The Sun and its accretion disk
Meteorites, which are remnants of solar system formation, provide a direct
glimpse into the dynamics and evolution of a young stellar object (YSO), namely
our Sun. Much of our knowledge about the astrophysical context of the birth of
the Sun, the chronology of planetary growth from micrometer-sized dust to
terrestrial planets, and the activity of the young Sun comes from the study of
extinct radionuclides such as 26Al (t1/2 = 0.717 Myr). Here we review how the
signatures of extinct radionuclides (short-lived isotopes that were present
when the solar system formed and that have now decayed below detection level)
in planetary materials influence the current paradigm of solar system
formation. Particular attention is given to tying meteorite measurements to
remote astronomical observations of YSOs and modeling efforts. Some extinct
radionuclides were inherited from the long-term chemical evolution of the
Galaxy, others were injected into the solar system by a nearby supernova, and
some were produced by particle irradiation from the T-Tauri Sun. The chronology
inferred from extinct radionuclides reveals that dust agglomeration to form
centimeter-sized particles in the inner part of the disk was very rapid (<50
kyr), planetesimal formation started early and spanned several million years,
planetary embryos (possibly like Mars) were formed in a few million years, and
terrestrial planets (like Earth) completed their growths several tens of
million years after the birth of the Sun.Comment: 49 pages, 9 figures, 1 table. Uncorrected preprin
Recommended from our members
Late-Stage Formation of Short-Lived Radionuclides by Solar Energetic Particle Irradiation in the Early Solar System
Recommended from our members
Impurity and laser-induced damage in the growth sectors of rapidly grown DKP crystals
We report the experimental results of impurity contamination and laser-induced damage investigations on rapidly grown potassium dihydrogen phosphate (KDP) crystals. Using absorption spectroscopy and chemical analysis, we determined the impurity distribution in the different growing sectors of KDP single crystals. The level of impurity was dependent on starting materials and growth rate. We also studied influence of impurities on laser-induced damage in fast grown KDP. The laser damage threshold (LDT) in the impurity-rich prismatic sector is same as in the high purity pyramidal sector within experimental error. Meanwhile, the LDT at the boundary of the prismatic and pyramidal sectors is less than half of that in the bulk. Furthermore, we found that the thermal annealing of the crystal eliminated the weakness of this sector boundary and increased its LDT to the same level as in the bulk of the crystal. Result suggests that the laser damage occurred in the vicinity of a high; localized strain field
Spectra and waiting-time densities in firing resonant and nonresonant neurons
The response of a neural cell to an external stimulus can follow one of the
two patterns: Nonresonant neurons monotonously relax to the resting state after
excitation while resonant ones show subthreshold oscillations. We investigate
how do these subthreshold properties of neurons affect their suprathreshold
response. Vice versa we ask: Can we distinguish between both types of neuronal
dynamics using suprathreshold spike trains? The dynamics of neurons is given by
stochastic FitzHugh-Nagumo and Morris-Lecar models with either having a focus
or a node as the stable fixpoint. We determine numerically the spectral power
density as well as the interspike interval density in response to a random
(noise-like) signals. We show that the information about the type of dynamics
obtained from power spectra is of limited validity. In contrast, the interspike
interval density gives a very sensitive instrument for the diagnostics of
whether the dynamics has resonant or nonresonant properties. For the latter
value we formulate a fit formula and use it to reconstruct theoretically the
spectral power density, which coincides with the numerically obtained spectra.
We underline that the renewal theory is applicable to analysis of
suprathreshold responses even of resonant neurons.Comment: 7 pages, 8 figure
First inverse kinematics measurement of key resonances in the 22Ne(p, γ)23Na reaction at stellar temperatures
In this Letter we report on the first inverse kinematics measurement of key resonances in the reaction which forms part of the NeNa cycle, and is relevant for Na synthesis in asymptotic giant branch (AGB) stars. An anti-correlation in O and Na abundances is seen across all well-studied globular clusters (GC), however, reaction-rate uncertainties limit the precision as to which stellar evolution models can reproduce the observed isotopic abundance patterns. Given the importance of GC observations in testing stellar evolution models and their dependence on NeNa reaction rates, it is critical that the nuclear physics uncertainties on the origin of Na be addressed. We present results of direct strengths measurements of four key resonances in at E = 149 keV, 181 keV, 248 keV and 458 keV. The strength of the important E = 458 keV reference resonance has been determined independently of other resonance strengths for the first time with an associated strength of = 0.439(22) eV and with higher precision than previously reported. Our result deviates from the two most recently published results obtained from normal kinematics measurements performed by the LENA and LUNA collaborations but is in agreement with earlier measurements. The impact of our rate on the Na-pocket formation in AGB stars and its relation to the O-Na anti-correlation was assessed via network calculations. Further, the effect on isotopic abundances in CO and ONe novae ejecta with respect to pre-solar grains was investigated
Direct Measurement of the Key e c. m.=456 keV Resonance in the Astrophysical Ne 19 (p,γ) Na 20 Reaction and Its Relevance for Explosive Binary Systems
We have performed a direct measurement of the Ne19(p,γ)Na20 reaction in inverse kinematics using a beam of radioactive Ne19. The key astrophysical resonance in the Ne19+p system has been definitely measured for the first time at Ec.m.=456-2+5 keV with an associated strength of 17-5+7 meV. The present results are in agreement with resonance strength upper limits set by previous direct measurements, as well as resonance energies inferred from precision (He3, t) charge exchange reactions. However, both the energy and strength of the 456 keV resonance disagree with a recent indirect study of the Ne19(d, n)Na20 reaction. In particular, the new Ne19(p,γ)Na20 reaction rate is found to be factors of ∼8 and ∼5 lower than the most recent evaluation over the temperature range of oxygen-neon novae and astrophysical x-ray bursts, respectively. Nevertheless, we find that the Ne19(p,γ)Na20 reaction is likely to proceed fast enough to significantly reduce the flux of F19 in nova ejecta and does not create a bottleneck in the breakout from the hot CNO cycles into the rp process
Cross section measurements of the 3He(alpha, gamma) 7Be reaction using DRAGON at TRIUMF.
4 pags., 2 figs. -- Nuclear Physics in Astrophysics V 3–8 April 2011, Eilat, IsraelWe present our initial efforts with the DRAGON separator at TRIUMF facility towards obtaining the energy dependence of the astrophysical S-factor for 3He(¿, ¿)7Be reaction in the energy range of Ecm = 2 to 3 MeV that was recommended by the recent evaluations. A comparison between the existing data and our new complementary Madrid data, together with the recent theoretical calculations, is also given in the context of our ongoing work.This work has been supported by the UK STFC
Information transmission in oscillatory neural activity
Periodic neural activity not locked to the stimulus or to motor responses is
usually ignored. Here, we present new tools for modeling and quantifying the
information transmission based on periodic neural activity that occurs with
quasi-random phase relative to the stimulus. We propose a model to reproduce
characteristic features of oscillatory spike trains, such as histograms of
inter-spike intervals and phase locking of spikes to an oscillatory influence.
The proposed model is based on an inhomogeneous Gamma process governed by a
density function that is a product of the usual stimulus-dependent rate and a
quasi-periodic function. Further, we present an analysis method generalizing
the direct method (Rieke et al, 1999; Brenner et al, 2000) to assess the
information content in such data. We demonstrate these tools on recordings from
relay cells in the lateral geniculate nucleus of the cat.Comment: 18 pages, 8 figures, to appear in Biological Cybernetic
Molybdenum Evidence for Inherited Planetary Scale Isotope Heterogeneity of the Protosolar Nebula
Isotope anomalies provide important information about early solar system
evolution. Here we report molybdenum isotope abundances determined in samples
of various meteorite classes. There is no fractionation of molybdenum isotopes
in our sample set within 0.1 permil and no contribution from the extinct
radionuclide 97Tc at mass 97 (97Tc/92Mo<3E-6). Instead, we observe clear
anomalies in bulk iron meteorites, mesosiderites, pallasites, and chondrites
characterized by a coupled excess in p- and r- or a mirror deficit in s-process
nuclides (Mo-HL). This large scale isotope heterogeneity of the solar system
observed for molybdenum must have been inherited from the interstellar
environment where the sun was born, illustrating the concept of ``cosmic
chemical memory''. The presence of molybdenum anomalies is used to discuss the
filiation between planetesimals.Comment: 7 pages, 2 figures, 1 table, accepted in Ap
- …