33 research outputs found
Recommended from our members
A crust and upper mantle model of Eurasia and North Africa for Pn travel time calculation
We develop a Regional Seismic Travel Time (RSTT) model and methods to account for the first-order effect of the three-dimensional crust and upper mantle on travel times. The model parameterization is a global tessellation of nodes with a velocity profile at each node. Interpolation of the velocity profiles generates a 3-dimensional crust and laterally variable upper mantle velocity. The upper mantle velocity profile at each node is represented as a linear velocity gradient, which enables travel time computation in approximately 1 millisecond. This computational speed allows the model to be used in routine analyses in operational monitoring systems. We refine the model using a tomographic formulation that adjusts the average crustal velocity, mantle velocity at the Moho, and the mantle velocity gradient at each node. While the RSTT model is inherently global and our ultimate goal is to produce a model that provides accurate travel time predictions over the globe, our first RSTT tomography effort covers Eurasia and North Africa, where we have compiled a data set of approximately 600,000 Pn arrivals that provide path coverage over this vast area. Ten percent of the tomography data are randomly selected and set aside for testing purposes. Travel time residual variance for the validation data is reduced by 32%. Based on a geographically distributed set of validation events with epicenter accuracy of 5 km or better, epicenter error using 16 Pn arrivals is reduced by 46% from 17.3 km (ak135 model) to 9.3 km after tomography. Relative to the ak135 model, the median uncertainty ellipse area is reduced by 68% from 3070 km{sup 2} to 994 km{sup 2}, and the number of ellipses with area less than 1000 km{sup 2}, which is the area allowed for onsite inspection under the Comprehensive Nuclear Test Ban Treaty, is increased from 0% to 51%
Controlling Solvation and Mass Transport Properties of Biobased Solvents through CO2 Expansion: A Physicochemical and Molecular Modeling Study
Gas-expanded liquids have been studied during past years; however, the physicochemical properties of some of these fluids still need to be characterized and understood. In particular, the study of properties concerning solvation and mass transport is key for industrial applications. This work presents the characterization of eight CO2-expanded biosourced solvents: organic carbonates (dimethyl, diethyl, ethylene, and propylene carbonates), anisole, veratrole, γ-valerolactone, and 2-methyltetrahydrofuran. Two approaches have been used: spectroscopic measurements and molecular modeling. Phase equilibrium was determined for each CO2/biosourced solvent system, and then the solvatochromic probe Nile Red was used to determine changes in dipolarity/polarizability (π* Kamlet–Taft parameter) by CO2 pressure. Molecular dynamics calculations were performed to determine the density and viscosity changes with CO2 pressure. It is shown in this study that the degree of modulation of dipolarity/polarizability parameter can go from that of pure solvent (around 0.4 for linear organic carbonates) to negative values, close to that of pure CO2 at the T and P used in this study. Concerning transport properties, such as density and viscosity, a great decrease in both these properties’ values was observed after swelling of the solvent by CO2, for instance, in linear organic carbonates where density can decrease to 50% the density of pure solvent; concerning viscosity a decrease of up to 90% was measured for these compounds. It was observed that the solubility of CO2 and then modulation of properties were higher in linear organic carbonates than in the cyclic ones. This study shows once more that CO2 has a great capacity to be used as a knob for triggering changes in the physicochemical properties of green biosourced solvents that can help to implement these solvents in industrial applications
Recommended from our members
Tomography and Methods of Travel-Time Calculation for Regional Seismic Location
We are developing a laterally variable velocity model of the crust and upper mantle across Eurasia and North Africa to reduce event location error by improving regional travel-time prediction accuracy. The model includes both P and S velocities and we describe methods to compute travel-times for Pn, Sn, Pg, and Lg phases. For crustal phases Pg and Lg we assume that the waves travel laterally at mid-crustal depths, with added ray segments from the event and station to the mid crustal layer. Our work on Pn and Sn travel-times extends the methods described by Zhao and Xie (1993). With consideration for a continent scale model and application to seismic location, we extend the model parameterization of Zhao and Xie (1993) by allowing the upper-mantle velocity gradient to vary laterally. This extension is needed to accommodate the large variation in gradient that is known to exist across Eurasia and North African. Further, we extend the linear travel-time calculation method to mantle-depth events, which is needed for seismic locators that test many epicenters and depths. Using these methods, regional travel times are computed on-the-fly from the velocity model in milliseconds, forming the basis of a flexible travel time facility that may be implemented in an interactive locator. We use a tomographic technique to improve upon a laterally variable starting velocity model that is based on Lawrence Livermore and Los Alamos National Laboratory model compilation efforts. Our tomographic data set consists of approximately 50 million regional arrivals from events that meet the ground truth (GT) criteria of Bondar et al. (2004) and other non-seismic constraints. Each datum is tested to meet strict quality control standards that include comparison with established distance-dependent travel-time residual populations relative to the IASPIE91 model. In addition to bulletin measurements, nearly 50 thousand arrival measurements were made at the national laboratories. The tomographic method adjusts Pn velocity, mantle gradient, and a node-specific crustal slowness correction for optimized travel-time prediction
New closed-form bounds on the performance of coding in correlated Rayleigh fading
New, simple bounds are presented for the probability of error in a binary hypothesis test for communications using diversity signaling in correlated Rayleigh fading. The bounds are developed in the context of pairwise error-event probabilities in decoding an error-correction code. A long-standing conjecture regarding the form of worst-case error events in exponentially correlated Rayleigh fading is also proven. The utility of the results is illustrated by their application to transfer-function bounds on the probability of bit error for a system using a convolutional code. The closed-form transfer-function bounds are shown to be tighter than previously developed transfer-function bounds for communications in exponentially correlated Rayleigh fading.United States Army Research Office (grant W911NF-05-1-0328)United States Army Research Laborator